• Click on the "Data Info" button to see data source and other notes
  • See "About the project’’ for transition rate formulas and explanation of units
  • Close

    Energies are given in cm\(^{-1}\). See this link for conversion factors. Electric matrix elements are given in atomic units. Magnetic dipole matrix elements are given in Bohr magnetons, \(\mu_B\). The values of magnetic-dipole hyperfine constants A are listed in MHz. Dipole polarizabilities \(\alpha\) are given in atomic units, \(a_0^3\), where \(a_0\) is the Bohr radius. The atomic units for \(\alpha\) can be converted to SI units via \(\alpha /h \rm{[Hz/(V/m)^2]}\)\(=2.48832 \times 10^{-8} \alpha \) [a.u.], where the conversion coefficient is \( 4\pi \epsilon_0 a^3_0/h \) and the Planck constant \(h\) is factored out.

    Learn more about these data

    Close
    Data are taken from, “M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I. Safronova, S. G. Porsev, and M. G. Kozlov, Phys. Rev. A 90, 042513 (2014), DOI: https://doi.org/10.1103/PhysRevA.90.042513", unless noted otherwise.
    Notes:
    1) Ground state ionization energy \(\ \rm{E}_{\rm{IP}} \)=306.5eV is given in, “M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I. Safronova, S. G. Porsev, and M. G. Kozlov, Phys. Rev. Lett. 113, 030801 (2014), DOI: https://doi.org/10.1103/PhysRevLett.113.030801".
    2) Experimental energies from are used in calculation of transition rate and lifetime.
    3) Transition types ‘M1’, ‘M2’, ‘E1’, ‘E2’ and ‘E3’ stand for magnetic dipole, magnetic quadrupole, electric dipole, electric quadrupole and electric octuple transition, respectively.
    Close
    J. Sugar and V. Kaufman, Phys. Scr. 24, 742 (1981),
    DOI: https://doi.org/10.1088/0031-8949/24/4/010 Close

    State Energy
    \(\ \lambda \)
    \( \alpha \)-variation sensitivity q Enhancement factor K Lifetime
    \(\ \) \(\ \rm{cm}^{-1} \) nm \(\ \rm{cm}^{-1} \) \(\ \) s
    $$4f_{5/2}$$ 0 $$ $$ 0 $$ $$ $$ $$
    $$4f_{7/2}$$ 6555 1526 5910 1.8 0.308
    $$5s_{1/2}$$ 60384 165.6 -134148 -4.4 3.1 \(\ \times 10^{5} \)
    $$5p_{1/2}$$ 268488 37.25 -114999 -0.9 0.167 \(\ \times 10^{-9} \)
    $$5p_{3/2}$$ 333203 30.01 -41477 -0.2 0.0731 \(\ \times 10^{-9} \)

    Transition Type Transition energy \(\ \lambda \) Matrix element
    Transition rate
    \(\ \) \(\ \) \(\ \rm{cm}^{-1} \) nm \(\ \) \(\ \rm{s}^{-1}\)
    $$4f_{7/2} -4f_{5/2}$$ M1 6555 1525.6 1.85 \(\ \mu_B \) 3.251
    $$4f_{7/2}-4f_{5/2}$$ E2 6555 1525.6 0.228 a.u. 8.801 \(\ \times 10^{-6} \)
    $$5s_{1/2}-4f_{5/2}$$ E3 60384 165.6 0.657 a.u. 1.986 \(\ \times 10^{-6} \)
    $$5s_{1/2} -4f_{7/2}$$ E3 53829 185.8 0.768 a.u. 1.214 \(\ \times 10^{-6} \)
    $$5s_{1/2} -4f_{5/2}$$ M2 60384 165.6 0.00025 \(\ \mu_B \) 3.643 \(\ \times 10^{-11} \)
    $$5p_{1/2} -5s_{1/2}$$ E1 208104 48.05 0.809 a.u. 5.978 \(\ \times 10^{9} \)
    $$5p_{3/2} -5s_{1/2}$$ E1 272819 36.65 1.153 a.u. 1.368 \(\ \times 10^{10} \)