• Click on the "Data Info" button to see data source and other notes
  • See "About the project’’ for transition rate formulas and explanation of units
  • Close

    Energies are given in cm\(^{-1}\). See this link for conversion factors. Electric matrix elements are given in atomic units. Magnetic dipole matrix elements are given in Bohr magnetons, \(\mu_B\). The values of magnetic-dipole hyperfine constants A are listed in MHz. Dipole polarizabilities \(\alpha\) are given in atomic units, \(a_0^3\), where \(a_0\) is the Bohr radius. The atomic units for \(\alpha\) can be converted to SI units via \(\alpha /h \rm{[Hz/(V/m)^2]}\)\(=2.48832 \times 10^{-8} \alpha \) [a.u.], where the conversion coefficient is \( 4\pi \epsilon_0 a^3_0/h \) and the Planck constant \(h\) is factored out.

    Learn more about these data

    Close
    Data are taken from, “M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I. Safronova, S. G. Porsev, and M. G. Kozlov, Phys. Rev. A 90, 042513 (2014), DOI: https://doi.org/10.1103/PhysRevA.90.042513", unless noted otherwise.
    Notes:
    1) Ground state ionization energy \(\ \rm{E}_{\rm{IP}}=163.0 eV \) is given in, “M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I. Safronova, S. G. Porsev, and M. G. Kozlov Phys. Rev. Lett. 113, 030801 (2014), DOI: https://doi.org/10.1103/PhysRevLett.113.030801".
    2) Transition types ‘M1’ and ‘E2’ stand for magnetic dipole and electric quadrupole transition, respectively.
    Close
    Close

    State Energy
    \(\ \lambda \)
    \(\ \alpha \)-variation sensitivity q Enhancement factor K Lifetime
    \(\ \) \(\ \rm{cm}^{-1} \) nm \(\ \rm{cm}^{-1} \) \(\ \) s
    $$5p_{1/2}$$ 0 $$ $$ 0 $$ $$ $$ $$
    $$4f_{5/2}$$ 3702(200) 2700(140) 73849 40 8.5 \(\ \times 10^{4} \)
    $$4f_{7/2}$$ 7031(200) 1422(40) 76833 22 2.35
    $$5p_{3/2}$$ 39141(40) 255.5(3) 44098 2.3 1.83 \(\ \times 10^{-3} \)

    Transition Type Transition energy
    \(\ \lambda \) Matrix element
    Transition rate
    \(\ \) \(\ \) \(\ \rm{cm}^{-1} \) nm \(\ \) \(\ \rm{s}^{-1} \)
    $$4f_{5/2}-5p_{1/2}$$ E2 3702 2701 0.955 a.u. 1.183\(\ \times 10^{-5} \)
    $$4f_{7/2}-4f_{5/2}$$ M1 3329 3004 1.851 \(\ \mu_B \) 4.260\(\ \times 10^{-1} \)
    $$5p_{3/2}-5p_{1/2}$$ M1 39141 255.5 1.151 \(\ \mu_B \) 5.352\(\ \times 10^{2} \)
    $$5p_{3/2}-5p_{1/2}$$ E2 39141 255.5 1.851 a.u. 8.81
    $$5p_{3/2}-4f_{5/2}$$ E2 35439 282.2 0.509 a.u. 4.058\(\ \times 10^{-1} \)
    $$5p_{3/2}-4f_{7/2}$$ E2 32110 311.4 1.258 a.u. 1.512