• Click on the "Data Info" button to see data source and other notes
  • See "About the project’’ for transition rate formulas and explanation of units
  • Close

    Energies are given in cm\(^{-1}\). See this link for conversion factors. Electric matrix elements are given in atomic units. Magnetic dipole matrix elements are given in Bohr magnetons, \(\mu_B\). The values of magnetic-dipole hyperfine constants A are listed in MHz. Dipole polarizabilities \(\alpha\) are given in atomic units, \(a_0^3\), where \(a_0\) is the Bohr radius. The atomic units for \(\alpha\) can be converted to SI units via \(\alpha /h \rm{[Hz/(V/m)^2]}\)\(=2.48832 \times 10^{-8} \alpha \) [a.u.], where the conversion coefficient is \( 4\pi \epsilon_0 a^3_0/h \) and the Planck constant \(h\) is factored out.

    Learn more about these data

    Close
    Data are taken from, “M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I. Safronova, S. G. Porsev, and M. G. Kozlov, Phys. Rev. A 90, 042513 (2014), DOI: https://doi.org/10.1103/PhysRevA.90.042513", unless noted otherwise.
    Notes:
    1) Experimental energies from are used in calculation of transition rate and lifetime.
    3) Transition types ‘M1’ and ‘E2’ stand for magnetic dipole and electric quadrupole transition, respectively.
    Close
    Kramida, A., Ralchenko, Yu., Reader, J. and NIST ASD Team (2021). NIST Atomic Spectra Database (version 5.9), [Online]. Available: https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD.
    DOI: https://doi.org/10.18434/T4W30F Close

    State Energy
    \(\ \lambda \)
    Lifetime
    \(\ \) \(\ \rm{cm}^{-1} \) nm s
    $$5p_{1/2}$$ 0 $$ $$ $$ $$
    $$5p_{3/2}$$ 19379 516.01 1.52 \(\ \times 10^{-2} \)
    $$4f_{5/2}$$ 166538 60.05 6.71 \(\ \times 10^{-5} \)
    $$4f_{7/2}$$ 167297 59.77 1.03\(\ \times 10^{-4} \)

    Transition Type Transition energy
    \(\ \lambda \)
    Matrix element
    Transition rate
    \(\ \) \(\ \) \(\ \rm{cm}^{-1} \) nm \(\ \) \(\ \rm{s} ^{-1} \)
    $$5p_{3/2}-5p_{1/2}$$ M1 19379 516.0 1.152 \(\ \mu_B \) 65.1
    $$5p_{3/2}-5p_{1/2}$$ E2 19379 516.0 2.885 a.u. 6.371 \(\ \times 10^{-1} \)
    $$4f_{5/2}-5p_{1/2}$$ E2 166538 60.05 2.315 a.u. 1.282 \(\ \times 10^{4} \)
    $$4f_{5/2}-5p_{3/2}$$ E2 147159 67.95 1.271 a.u. 2.080 \(\ \times 10^{3} \)
    $$4f_{7/2}-4f_{5/2}$$ M1 759 13175 1.851 \(\ \mu_B \) 5.053 \(\ \times 10^{-3} \)
    $$4f_{7/2}-4f_{5/2}$$ E2 759 13175 0.784 a.u. 2.166 \(\ \times 10^{-9} \)
    $$4f_{7/2}-5p_{3/2}$$ E2 147918 67.61 3.123 a.u. 9.668 \(\ \times 10^{3} \)