• Click on the "Data Info" button to see data source and other notes
  • See "About the project’’ for transition rate formulas and explanation of units
  • Close

    Energies are given in cm\(^{-1}\). See this link for conversion factors. Electric matrix elements are given in atomic units. Magnetic dipole matrix elements are given in Bohr magnetons, \(\mu_B\). The values of magnetic-dipole hyperfine constants A are listed in MHz. Dipole polarizabilities \(\alpha\) are given in atomic units, \(a_0^3\), where \(a_0\) is the Bohr radius. The atomic units for \(\alpha\) can be converted to SI units via \(\alpha /h \rm{[Hz/(V/m)^2]}\)\(=2.48832 \times 10^{-8} \alpha \) [a.u.], where the conversion coefficient is \( 4\pi \epsilon_0 a^3_0/h \) and the Planck constant \(h\) is factored out.

    Learn more about these data

    Close
    Data are taken from, “M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I. Safronova, S. G. Porsev, and M. G. Kozlov, Phys. Rev. A 90, 042513 (2014), DOI: https://doi.org/10.1103/PhysRevA.90.042513", unless noted otherwise.
    Note:
    Transition types ‘M1’, ‘E1’ and ‘E2’ stand for magnetic dipole, electric dipole and electric quadrupole transition, respectively.
    Close
    Close

    State Energy
    \(\ \lambda \)
    \( \alpha \)-variation sensitivity q
    Enhancement factor K Lifetime
    \(\ \) \(\ \rm{cm}^{-1} \) nm \(\ \rm{cm}^{-1} \) \(\ \) s
    $$ 5s^24f\ ^2F_{5/2} $$ 0 $$ $$ 0 $$ $$ $$ $$
    $$ 5s^24f\ ^2F_{7/2} $$ 6203(100) 1612(28) 5654 1.8 0.367
    $$ 5s4f^2\ ^4H_{7/2} $$ 20254(940) 494(22) 123621 12 0.133
    $$ 5s4f^2\ ^4H_{9/2} $$ 22519(950) 444(18) 125397 11 0.141
    $$ 5s4f^2\ ^4H_{11/2} $$ 25904(980) 386(14) 128875 10 0.576
    $$ 5s4f^2\ ^4F_{3/2} $$ 29249(900) 342(10) 124872 8.5 6.74 \(\ \times 10^{-3} \)
    $$ 5s4f^2\ ^4H_{13/2} $$ 29727(1000) 336(11) $$ $$ $$ $$ 0.597
    $$ 5s4f^2\ ^4F_{5/2} $$ 30739(900) 325(9) $$ $$ $$ $$ 9.62 \(\ \times 10^{-3} \)
    $$ 5s4f^2\ ^4F_{7/2} $$ 32786(920) 305(8) $$ $$ $$ $$ 1.20 \(\ \times 10^{-2} \)
    $$ 5s4f^2\ ^2H_{9/2} $$ 33152(950) 302(8) $$ $$ $$ $$ 2.78 \(\ \times 10^{-3} \)
    $$ 5s4f^2\ ^4F_{9/2} $$ 34871(950) 287(8) $$ $$ $$ $$ 9.61 \(\ \times 10^{-3} \)
    $$ 5s4f^2\ ^2G_{7/2} $$ 39572(930) 253(6) $$ $$ $$ $$ 5.31 \(\ \times 10^{-4} \)
    $$ 5s4f^2\ ^2H_{11/2} $$ 40319(1000) 248(6) $$ $$ $$ $$ 0.207
    $$ 5s4f^2\ ^2F_{5/2} $$ 42132(900) 237(5) $$ $$ $$ $$ 3.19 \(\ \times 10^{-4} \)

    Transition Type Transition energy
    \(\ \lambda \) Matrix element
    Transition rate
    \(\ \) \(\ \) \(\ \rm{cm}^{-1} \) nm \(\ \) \(\ \rm{s}^{-1} \)
    $$ 5s^24f\ ^2F_{7/2} - 5s^24f\ ^2F_{5/2} $$ M1 6203 1612 1.84102 \(\ \mu_B \) 2.728
    $$ 5s^24f\ ^2F_{7/2} - 5s^24f\ ^2F_{5/2} $$ E2 6203 1612 0.19504 a.u. 4.891 \(\ \times 10^{-6} \)
    $$ 5s4f^2\ ^4H_{7/2} - 5s^24f\ ^2F_{5/2} $$ E1 20254 493.7 0.00188 a.u. 7.443
    $$ 5s4f^2\ ^4H_{7/2} - 5s^24f\ ^2F_{7/2} $$ E1 14051 711.7 0.00027 a.u. 4.949 \(\ \times 10^{-2} \)
    $$ 5s4f^2\ ^4H_{9/2} - 5s^24f\ ^2F_{7/2} $$ E1 16316 612.9 0.00275 a.u. 6.636
    $$ 5s4f^2\ ^4H_{9/2} - 5s4f^2\ ^4H_{7/2} $$ M1 2265 4415 3.85331 \(\ \mu_B \) 4.654 \(\ \times 10^{-1} \)
    $$ 5s4f^2\ ^4H_{11/2} - 5s4f^2\ ^4H_{9/2} $$ M1 3385 2954 4.46125 \(\ \mu_B \) 1.735
    $$ 5s4f^2\ ^4F_{3/2} - 5s^24f\ ^2F_{5/2} $$ E1 29249 341.9 0.00342 a.u. 1.484 \(\ \times 10^{2} \)
    $$ 5s4f^2\ ^4F_{3/2} - 5s4f^2\ ^4H_{7/2} $$ E2 8995 1112 0.41986 a.u. 2.906 \(\ \times 10^{-4} \)
    $$ 5s4f^2\ ^4H_{13/2} - 5s4f^2\ ^4H_{11/2} $$ M1 3823 2616 3.94520 \(\ \mu_B \) 1.676
    $$ 5s4f^2\ ^4F_{5/2} - 5s^24f\ ^2F_{5/2} $$ E1 30739 325.3 0.00293 a.u. 8.426 \(\ \times 10^{1} \)
    $$ 5s4f^2\ ^4F_{5/2} - 5s^24f\ ^2F_{7/2} $$ E1 24536 407.6 0.00198 a.u. 1.956 \(\ \times 10^{1} \)
    $$ 5s4f^2\ ^4F_{5/2} - 5s4f^2\ ^4F_{3/2} $$ M1 1490 6711 3.02227 \(\ \mu_B \) 1.358 \(\ \times 10^{-1} \)
    $$ 5s4f^2\ ^4F_{7/2} - 5s^24f\ ^2F_{5/2} $$ E1 32786 305.0 0.00280 a.u. 6.993 \(\ \times 10^{1} \)
    $$ 5s4f^2\ ^4F_{7/2} - 5s^24f\ ^2F_{7/2} $$ E1 26583 376.2 0.00165 a.u. 1.292 \(\ \times 10^{1} \)
    $$ 5s4f^2\ ^4F_{7/2} - 5s4f^2\ ^4H_{7/2} $$ M1 12532 798.0 0.17406 \(\ \mu_B \) 2.011 \(\ \times 10^{-1} \)
    $$ 5s4f^2\ ^4F_{7/2} - 5s4f^2\ ^4F_{5/2} $$ M1 2047 4885 3.45759 \(\ \mu_B \) 3.457 \(\ \times 10^{-1} \)
    $$ 5s4f^2\ ^2H_{9/2} - 5s^24f\ ^2F_{7/2} $$ E1 26949 371.1 0.00948 3.565 \(\ \times 10^{2} \)
    $$ 5s4f^2\ ^2H_{9/2} - 5s4f^2\ ^4H_{7/2} $$ M1 12898 775.3 0.68350 \(\ \mu_B \) 2.704
    $$ 5s4f^2\ ^4F_{9/2} - 5s^24f\ ^2F_{7/2} $$ E1 28668 348.8 0.00461 a.u. 1.014 \(\ \times 10^{2} \)
    $$ 5s4f^2\ ^4F_{9/2} - 5s4f^2\ ^4H_{7/2} $$ M1 14617 684.1 0.47324 \(\ \mu_B \) 1.887
    $$ 5s4f^2\ ^4F_{9/2} - 5s4f^2\ ^4H_{9/2} $$ M1 12352 809.6 0.31751 \(\ \mu_B \) 5.125 \(\ \times 10^{-1} \)
    $$ 5s4f^2\ ^4F_{9/2} - 5s4f^2\ ^4F_{7/2} $$ M1 2085 4796 2.17854 \(\ \mu_B \) 1.160 \(\ \times 10^{-1} \)
    $$ 5s4f^2\ ^2G_{7/2} - 5s^24f\ ^2F_{5/2} $$ E1 39572 252.7 0.00971 a.u. 1.481 \(\ \times 10^{3} \)
    $$ 5s4f^2\ ^2G_{7/2} - 5s^24f\ ^2F_{7/2} $$ E1 33369 299.7 0.00649 a.u. 3.966 \(\ \times 10^{2} \)
    $$ 5s4f^2\ ^2G_{7/2} - 5s4f^2\ ^4H_{7/2} $$ M1 19318 517.7 0.36685 \(\ \mu_B \) 3.271
    $$ 5s4f^2\ ^2G_{7/2} - 5s4f^2\ ^4H_{7/2} $$ E2 19318 517.7 0.05278 \(\ \mu_B \) 1.049 \(\ \times 10^{-4} \)
    $$ 5s4f^2\ ^2G_{7/2} - 5s4f^2\ ^4H_{9/2} $$ M1 17053 586.4 0.31357 \(\ \mu_B \) 1.644
    $$ 5s4f^2\ ^2H_{11/2} - 5s4f^2\ ^4H_{9/2} $$ M1 17800 561.8 0.20464 \(\ \mu_B \) 5.309 \(\ \times 10^{-1} \)
    $$ 5s4f^2\ ^2H_{11/2} - 5s4f^2\ ^4H_{13/2} $$ M1 10592 944.1 0.61320 \(\ \mu_B \) 1.004
    $$ 5s4f^2\ ^2H_{11/2} - 5s4f^2\ ^2H_{9/2} $$ M1 7167 1395 1.62592 \(\ \mu_B \) 2.188
    $$ 5s4f^2\ ^2H_{11/2} - 5s4f^2\ ^4F_{9/2} $$ M1 5448 1836 1.66384 \(\ \mu_B \) 1.006
    $$ 5s4f^2\ ^2F_{5/2} - 5s^24f\ ^2F_{5/2} $$ E1 42132 237.3 0.01101 a.u. 3.062 \(\ \times 10^{3} \)
    $$ 5s4f^2\ ^2F_{5/2} - 5s^24f\ ^2F_{7/2} $$ E1 35929 278.3 0.00214 a.u. 7.140 \(\ \times 10^{1} \)
    $$ 5s4f^2\ ^2F_{5/2} - 5s4f^2\ ^4F_{3/2} $$ M1 12883 776.2 0.43453 \(\ \mu_B \) 1.815