• Click on the "Data Info" button to see data source and other notes
  • See "About the project’’ for transition rate formulas and explanation of units
  • Close

    Energies are given in cm\(^{-1}\). See this link for conversion factors. Electric matrix elements are given in atomic units. Magnetic dipole matrix elements are given in Bohr magnetons, \(\mu_B\). The values of magnetic-dipole hyperfine constants A are listed in MHz. Dipole polarizabilities \(\alpha\) are given in atomic units, \(a_0^3\), where \(a_0\) is the Bohr radius. The atomic units for \(\alpha\) can be converted to SI units via \(\alpha /h \rm{[Hz/(V/m)^2]}\)\(=2.48832 \times 10^{-8} \alpha \) [a.u.], where the conversion coefficient is \( 4\pi \epsilon_0 a^3_0/h \) and the Planck constant \(h\) is factored out.

    Learn more about these data

    Close
    Data are taken from, “M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I. Safronova, S. G. Porsev, and M. G. Kozlov Phys. Rev. A 90, 052509 (2014), DOI: https://doi.org/10.1103/PhysRevA.90.052509", unless noted otherwise.
    Note:
    1) Transition types ‘M1’, ‘M2’, ‘E1’ and ‘E2’ stand for magnetic dipole, magnetic quadrupole, electric dipole and electric quadrupole transition, respectively.
    2) The disagreement of theory and experimental energies was discussed in detail in, “Phys. Rev. A 90, 052509 (2014)”, indicating a problem with experimental data.
    Close
    S. S. Churilov, Y. N. Joshi, and A. N. Ryabtsev, Phys. Scr. 71, 43 (2005),
    DOI: https://doi.org/10.1088/0031-8949/71/1/007. Close

    State Energy
    Energy
    \(\ \lambda \) \(\ \lambda \)
    \( \alpha \)-variation sensitivity q Enhancement factor K Lifetime
    \(\ \) \(\ \rm{cm}^{-1} \) \(\ \rm{cm}^{-1} \) nm nm \(\ \rm{cm}^{-1} \) \(\ \) s
    $$5s^2 \ ^1S_0$$ 0 0 $$ $$ $$ $$ 0 $$ $$ $$ $$
    $$5s4f \ ^3F_2$$ 79469(600) 77162 125.8(9) 129.6 101461 2.6 7.622 \(\ \times 10^{10} \)
    $$5s4f \ ^3F_3$$ 80769(610) 78443 123.8(9) 127.5 102325 2.5 18.9
    $$5s4f \ ^3F_4$$ 83730(650) 81440 119.4(9) 122.8 105340 2.5 2.042
    $$5s4f \ ^1F_3$$ 89951(640) 87312 111.2(8) 114.5 105827 2.4 0.41
    $$5s5p \ ^3P_0$$ 159667(1020) 156417 62.6(4) 63.9 14175 0.2 7.905 \(\ \times 10^{-3} \)
    $$5s5p \ ^3P_1$$ 168547(800) 165482 59.3(3) 60.4 19465 0.2 1.710 \(\ \times 10^{-9} \)
    $$5s5p \ ^3P_2$$ 207976(1400) 204685 48.1(3) 48.9 6.054 \(\ \times 10^{-4} \)
    $$5s5p \ ^1P_1$$ 245594(320) 245748 40.7(1) 40.7 5.136 \(\ \times 10^{-11} \)

    Transition Type Transition energy
    \(\ \lambda \) Matrix element
    Transition rate
    \(\ \) \(\ \) \(\ \rm{cm}^{-1} \) nm \(\ \) \(\ \rm{s}^{-1} \)
    $$5s2 \ ^1S_{0}-5s4f\ ^3F_{2}$$ M2 79469 125.8 0.00012 \(\ \mu_B \) 1.312 \(\ \times 10^{-11} \)
    $$5s4f \ ^3F_{2}- 5s4f\ ^3F_{3}$$ M1 1300 7692 2.49401 \(\ \mu_B \) 5.266 \(\ \times 10^{-2} \)
    $$5s4f \ ^3F_{3}- 5s4f\ ^3F_{4}$$ M1 2961 3377 2.50909 \(\ \mu_B \) 4.898 \(\ \times 10^{-1} \)
    $$5s4f \ ^3F_{2}- 5s4f\ ^3F_{4}$$ E2 4261 2347 0.07926 a.u. 1.098 \(\ \times 10^{-7} \)
    $$5s4f \ ^3F_{2}- 5s4f\ ^1F_{3}$$ M1 10482 954.0 0.61326 \(\ \mu_B \) 1.669
    $$5s4f \ ^3F_{4}- 5s4f\ ^1F_{3}$$ M1 6221 1607 0.61858 \(\ \mu_B \) 3.549 \(\ \times 10^{-1} \)
    $$5s4f \ ^3F_{2}- 5s5p\ ^3P_{0}$$ E2 80198 124.7 0.58339 a.u. 1.265 \(\ \times 10^{2} \)
    $$5s^2 \ ^1S_{0}- 5s5p\ ^3P_{1}$$ E1 168547 59.3 0.42601 a.u. 5.868 \(\ \times 10^{8} \)
    $$5s4f \ ^3F_{4}- 5s5p\ ^3P_{2}$$ E2 124246 80.5 1.1409 a.u. 8.632 \(\ \times 10^{2} \)
    $$5s^2 \ ^1S_{0}- 5s5p\ ^3P_{2}$$ M2 207976 48.1 5.972 \(\ \mu_B \) 4.138
    $$5s4f \ ^3F_{2}- 5s5p\ ^3P_{2}$$ E2 128507 77.8 0.21718 a.u. 3.703 \(\ \times 10^{1} \)
    $$5s5p \ ^3P_{0}- 5s5p\ ^3P_{2}$$ E2 48309 207.0 1.2316 a.u. 8.94
    $$5s5p \ ^3P_{1}- 5s5p\ ^3P_{2}$$ M1 39429 253.6 1.49436 \(\ \mu_B \) 7.384 \(\ \times 10^{2} \)
    $$5s2 \ ^1S_{0}- 5s5p\ ^1P_{1}$$ E1 245594 40.7 1.3951 a.u. 1.947 \(\ \times 10^{10} \)
    $$5s4f \ ^1F_{3}- 5s5p\ ^1P_{1}$$ E2 155643 64.2 0.89639 a.u. 2.740 \(\ \times 10^{3} \)
    $$5s5p \ ^3P_{0}- 5s5p\ ^1P_{1}$$ M1 85927 116.4 0.42382 \(\ \mu_B \) 1.024 \(\ \times 10^{3} \)
    $$5s5p \ ^3P_{2}- 5s5p\ ^1P_{1}$$ M1 37618 265.8 0.47796 \(\ \mu_B \) 1.093 \(\ \times 10^{2} \)