• Click on the "Data Info" button to see data source and other notes
  • See "About the project’’ for transition rate formulas and explanation of units
  • Close

    Energies are given in cm\(^{-1}\). See this link for conversion factors. Electric matrix elements are given in atomic units. Magnetic dipole matrix elements are given in Bohr magnetons, \(\mu_B\). The values of magnetic-dipole hyperfine constants A are listed in MHz. Dipole polarizabilities \(\alpha\) are given in atomic units, \(a_0^3\), where \(a_0\) is the Bohr radius. The atomic units for \(\alpha\) can be converted to SI units via \(\alpha /h \rm{[Hz/(V/m)^2]}\)\(=2.48832 \times 10^{-8} \alpha \) [a.u.], where the conversion coefficient is \( 4\pi \epsilon_0 a^3_0/h \) and the Planck constant \(h\) is factored out.

    Learn more about these data

    Close
    Data are taken from, “M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I. Safronova, S. G. Porsev, and M. G. Kozlov, Phys. Rev. A 90, 042513 (2014), DOI: https://doi.org/10.1103/PhysRevA.90.042513", unless noted otherwise.
    Notes:
    1) Ground state ionization energy \(\ \rm{E}_{\rm{IP}} \) = 101.2 eV is given in, “M.  S. Safronova, V.  A. Dzuba, V.  V. Flambaum, U.  I. Safronova, S.  G. Porsev, and M.  G. Kozlov, Phys. Rev. Lett. 113, 030801 (2014), DOI: https://doi.org/10.1103/PhysRevLett.113.03080".
    2) Experimental energies from are used in calculation of transition rate and lifetime.
    3) Transition types ‘M1’ and ‘E2’ stand for magnetic dipole and electric quadrupole transition, respectively.
    Close
    Close

    State Energy
    \(\ \lambda \)
    Lifetime
    \(\ \) \(\ \rm{cm}^{-1} \) nm s
    $$5p_{1/2}$$ 0 $$ $$ $$ $$
    $$5p_{3/2}$$ 23592 423.87 8.43 \(\ \times 10^{-3} \)
    $$4f_{5/2}$$ 137385 72.79 3.13 \(\ \times 10^{-4} \)
    $$4f_{7/2}$$ 138675 72.11 6.30 \(\ \times 10^{-4} \)

    Transition Type Transition energy \(\ \lambda \) Matrix element
    Transition rate
    \(\ \) \(\ \) \(\ \rm{cm}^{-1} \) \(\ \rm{nm} \) \(\ \) \(\ \rm{s}^{-1} \)
    $$5p_{3/2}-5p_{1/2}$$ M1 23592 423.87 1.151 \(\ \mu_B \) 1.174 \(\ \times 10^2 \)
    $$5p_{3/2}-5p_{1/2}$$ E2 23592 423.87 2.544 a.u. 1.324
    $$4f_{5/2}-5p_{1/2}$$ E2 137385 72.79 1.770 a.u. 2.862 \(\ \times 10^3 \)
    $$4f_{5/2}-5p_{3/2}$$ E2 113793 87.88 0.963 a.u. 3.304 \(\ \times 10^2 \)
    $$4f_{7/2}-4f_{5/2}$$ M1 1290 7752 1.851 \(\ \mu_B \) 2.480 \(\ \times 10^{-2} \)
    $$4f_{7/2}-5p_{3/2}$$ E2 115083 86.89 2.371 a.u. 1.589 \(\ \times 10^3 \)