• Click on the "Data Info" button to see data source and other notes
  • See "About the project’’ for transition rate formulas and explanation of units
  • Close

    Energies are given in cm\(^{-1}\). See this link for conversion factors. Electric matrix elements are given in atomic units. Magnetic dipole matrix elements are given in Bohr magnetons, \(\mu_B\). The values of magnetic-dipole hyperfine constants A are listed in MHz. Dipole polarizabilities \(\alpha\) are given in atomic units, \(a_0^3\), where \(a_0\) is the Bohr radius. The atomic units for \(\alpha\) can be converted to SI units via \(\alpha /h \rm{[Hz/(V/m)^2]}\)\(=2.48832 \times 10^{-8} \alpha \) [a.u.], where the conversion coefficient is \( 4\pi \epsilon_0 a^3_0/h \) and the Planck constant \(h\) is factored out.

    Learn more about these data

    Close
    Data are taken from, “S. G. Porsev, U. I. Safronova, M. S. Safronova, P. O. Schmidt, A. I. Bondarev, M. G. Kozlov, I. I. Tupitsyn, and C. Cheung, Phys. Rev. A 102, 012802 (2020), DOI: https://doi.org/10.1103/PhysRevA.102.012802”, unless noted otherwise.
    Notes:
    1) The uncertainty of the clock transition energy is \(\ \sim \)1800 cm\(\ ^{-1}\).
    2) Estimated accuracy of the hyperfine constant is 20-30%.
    Close
    Close

    State Energy \(\ \lambda \) Lifetime \(\ \langle \gamma J ||Q|| \gamma J\rangle \) Quadrupole moment Polarizability \(\ A/g_{_{_{I}}} \)
    \(\ \) \(\ \rm{cm^{-1}} \) nm s \(\ |e|a_0^2 \) \(\ |e|a_0^2 \) \(\ a_0^3 \) MHz
    $$5f 6p^2\,\,^2\!F^o_{5/2}$$ 0 $$\approx 0.31$$ 0.15 0.89 4200
    $$5f^2 6p\,\,^4\!I^o_{9/2}$$ 16172 618.352708 1322 $$\approx 0.53$$ 0.25 0.986 21000
    $$5f 6p^2\,\,^2\!F^o_{7/2}$$ 22610 442.282176 0.009 $$ $$ $$ $$ $$ $$ $$ $$
    $$5f^2 6p\,\,^2\!F^o_{5/2}$$ 30984 322.747224 0.18 $$ $$ $$ $$ $$ $$ $$ $$
    $$5f^2 6p\,\,^2\!D^o_{3/2}$$ 32353 309.090347 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
    $$5f^2 6p\,\,^2\!G^o_{7/2}$$ 32400 308.641975 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
    $$5f^2 6p\,\,^4\!I^o_{11/2}$$ 40450 247.218789 0.003 $$ $$ $$ $$ $$ $$ $$ $$
    $$5f^2 6p\,\,^4\!H^o_{9/2}$$ 41457 241.213788 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
    $$(6p^2 6d)_{3/2}$$ 537515 18.604132 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
    $$(5f 6p 6d)_{9/2}$$ 541773 18.457915 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
    $$(5f 6p 6d)_{7/2}$$ 545245 18.340379 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
    $$(5f 6p 6d)_{5/2}$$ 545939 18.317065 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
    $$(5f 6p 6d)_{3/2}$$ 553637 18.062377 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$

    Clock transition \(\ 5f^2 6p\,\, ^4\!I^o_{9/2} \rightarrow \,5f 6p^2\,\, ^2\!F^o_{5/2} \)
    Clock frequency 4.8 \(\ \times 10^{14}\) Hz
    Fractional Black Body Radiation shift at T=300K \(\ -1.7 \times 10^{18} \)