• Click on the "Data Info" button to see data source and other notes
  • See "About the project’’ for transition rate formulas and explanation of units
  • Close

    Energies are given in cm\(^{-1}\). See this link for conversion factors. Electric matrix elements are given in atomic units. Magnetic dipole matrix elements are given in Bohr magnetons, \(\mu_B\). The values of magnetic-dipole hyperfine constants A are listed in MHz. Dipole polarizabilities \(\alpha\) are given in atomic units, \(a_0^3\), where \(a_0\) is the Bohr radius. The atomic units for \(\alpha\) can be converted to SI units via \(\alpha /h \rm{[Hz/(V/m)^2]}\)\(=2.48832 \times 10^{-8} \alpha \) [a.u.], where the conversion coefficient is \( 4\pi \epsilon_0 a^3_0/h \) and the Planck constant \(h\) is factored out.

    Learn more about these data

    Close
    Data are taken from, “S. G. Porsev, U. I. Safronova, M. S. Safronova, P. O. Schmidt, A. I. Bondarev, M. G. Kozlov, I. I. Tupitsyn, and C. Cheung, Phys. Rev. A 102, 012802 (2020), DOI: https://doi.org/10.1103/PhysRevA.102.012802", unless noted otherwise.
    Notes:
    1) The uncertainty of the clock transition energy is \(\ \sim \) 600 cm\(\ ^{-1} \)
    2) Estimated accuracy of the hyperfine constant is 20-30%.
    Close
    Close

    State Energy \(\ \lambda \) Lifetime \(\ \langle \gamma J ||Q|| \gamma J\rangle \) Quadrupole moment Polarizability \(\ A/g_{_{_{I}}} \)
    \(\ \) \(\ \rm{cm^{-1}} \) nm s \(\ |e|a_0^2 \) \(\ |e|a_0^2 \) \(\ a_0^3 \) MHz
    $$(6s^2\,\,5f)^o_{5/2}$$ 0 $$\approx 0.80$$ 0.39 0.961 1900
    $$(6s^2\,\,6p)^o_{1/2}$$ 20611 485.177818 6 $$ $$ 0 0.919 195000
    $$(6s^2\,\,5f)^o_{7/2}$$ 20895 478.583393 0.0095 $$ $$ $$ $$ $$ $$ $$ $$
    $$(6s^2\,\,6p)^o_{3/2}$$ 243081 41.138551 $$7 \times 10^{-6}$$ $$ $$ $$ $$ $$ $$ $$ $$
    $$(6s\,\,5f^2)_{7/2}$$ 200890 49.778486 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
    $$(6s\,\,5f^2)_{9/2}$$ 206765 48.364085 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
    $$(6s\,\,5f^2)_{3/2}$$ 208501 47.961401 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
    $$(6s\,\,5f^2)_{5/2}$$ 210182 47.577814 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
    $$(6s\,5f\,6p)_{5/2}$$ 217050 46.072334 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$

    Clock transition \(\ 6s^2\,6p_{1/2} \rightarrow \, 6s^2\,5f_{5/2}\)
    Clock frequency 6.1 \(\ \times 10^{14}\) Hz
    Fractional Black Body Radiation shift at T=300K $$ 5.7 \times 10^{-19}$$