1 mzlib/ a-signature
2 mzlib/ a-unit
3 mzlib/ async-channel
4 mzlib/ awk
5 mzlib/ class
6 mzlib/ class100
7 mzlib/ cm
8 mzlib/ cm-accomplice
9 mzlib/ cmdline
10 mzlib/ cml
11 mzlib/ compat
12 mzlib/ compile
13 mzlib/ contract
14 mzlib/ control
15 mzlib/ date
16 mzlib/ deflate
17 mzlib/ defmacro
18 mzlib/ etc
19 mzlib/ file
20 mzlib/ for
21 mzlib/ foreign
22 mzlib/ include
23 mzlib/ inflate
24 mzlib/ integer-set
25 mzlib/ kw
26 mzlib/ list
27 mzlib/ match
28 mzlib/ math
29 mzlib/ md5
30 mzlib/ os
31 mzlib/ pconvert
32 mzlib/ pconvert-prop
33 mzlib/ plt-match
34 mzlib/ port
35 mzlib/ pregexp
36 mzlib/ pretty
37 mzlib/ process
38 mzlib/ restart
39 mzlib/ runtime-path
40 mzlib/ sandbox
41 mzlib/ sendevent
42 mzlib/ serialize
43 mzlib/ shared
44 mzlib/ string
45 mzlib/ struct
46 mzlib/ stxparam
47 mzlib/ surrogate
48 mzlib/ tar
49 mzlib/ thread
50 mzlib/ trace
51 mzlib/ traceld
52 mzlib/ trait
53 mzlib/ transcr
54 mzlib/ unit
55 mzlib/ unit-exptime
56 mzlib/ unit200
57 mzlib/ unitsig200
58 mzlib/ zip
Bibliography
Index
On this page:
make-integer-set
integer-set-contents
set-integer-set-contents!
integer-set?
well-formed-set?
make-range
intersect
difference
union
split
complement
xor
member?
get-integer
foldr
partition
card
subset?
Version: 4.0.2

 

 (require mzlib/integer-set)

The mzlib/integer-set library provides functions for working with finite sets of integers. This module is designed for sets that are compactly represented as groups of intervals, even when their cardinality is large. For example, the set of integers from -1000000 to 1000000 except for 0, can be represented as {[-1000000, -1], [1, 1000000]}. This data structure would not be a good choice for the set of all odd integers between 0 and 1000000, which would be {[1, 1], [3, 3], ... [999999, 999999]}.

In addition to the integer set abstract type, a well-formed set is a list of pairs of exact integers, where each pair represents a closed range of integers, and the entire set is the union of the ranges. The ranges must be disjoint and increasing. Further, adjacent ranges must have at least one integer between them. For example: '((-1 . 2) (4 . 10)) is a well-formed-set as is '((1 . 1) (3 . 3)), but '((1 . 5) (6 . 7)), '((1 . 5) (-3 . -1)), '((5 . 1)), and '((1 . 5) (3 . 6)) are not.

(make-integer-set wfs)  integer-set?

  wfs : well-formed-set?

Creates an integer set from a well-formed set.

(integer-set-contents s)  well-formed-set?

  s : integer-set?

Produces a well-formed set from an integer set.

(set-integer-set-contents! s wfs)  void?

  s : integer-set?

  wfs : well-formed-set?

Mutates an integer set.

(integer-set? v)  boolean?

  v : any/c

Returns #t if v is an integer set, #f otherwise.

(well-formed-set? v)  boolean?

  v : any/c

Returns #t if v is a well-formed set, #f otherwise.

(make-range)  integer-set?

(make-range elem)  integer-set?

  elem : exact-integer?

(make-range start end)  integer-set?

  start : exact-integer?

  end : exact-integer?

Produces, respectively, an empty integer set, an integer set containing only elem, or an integer set containing the integers from start to end inclusive, where (<= start end).

(intersect x y)  integer-set?

  x : integer-set?

  y : integer-set?

Returns the intersection of the given sets.

(difference x y)  integer-set?

  x : integer-set?

  y : integer-set?

Returns the difference of the given sets (i.e., elements in x that are not in y).

(union x y)  integer-set?

  x : integer-set?

  y : integer-set?

Returns the union of the given sets.

(split x y)  integer-set?

  x : integer-set?

  y : integer-set?

Produces three values: the first is the intersection of x and y, the second is the difference x remove y, and the third is the difference y remove x.

(complement s start end)  any

  s : integer-set?

  start : exact-integer?

  end : exact-integer?

Returns the a set containing the elements between start to end inclusive that are not in s, where (<= start-k end-k).}

(xor x y)  integer-set?

  x : integer-set?

  y : integer-set?

Returns an integer set containing every member of x and y that is not in both sets.

(member? k s)  boolean?

  k : exact-integer?

  s : integer-set?

Returns #t if k is in s, #f otherwise.

(get-integer integer-set)  (or/c exact-integer? false/c)

  integer-set : any/c

Returns a member of integer-set, or #f if integer-set is empty.

(foldr proc base-v s)  any/c

  proc : (exact-integer? any/c . -> . any/c)

  base-v : any/c

  s : integer-set?

Applies proc to each member of s in ascending order, where the first argument to proc is the set member, and the second argument is the fold result starting with base-v. For example, (foldr cons null s) returns a list of all the integers in s, sorted in increasing order.

(partition s)  (listof integer-set?)

  s : integer-set-list?

Returns the coarsest refinement of the sets in s such that the sets in the result list are pairwise disjoint. For example, partitioning the sets that represent '((1 . 2) (5 . 10)) and '((2 . 2) (6 . 6) (12 . 12)) produces the a list containing the sets for '((1 . 1) (5 . 5) (7 . 10)) '((2 . 2) (6 . 6)), and '((12 . 12)).

(card s)  exact-nonnegative-integer?

  s : integer-set?

Returns the number of integers in the given integer set.

(subset? x y)  boolean?

  x : integer-set?

  y : integer-set?

Returns true if every integer in x is also in y, otherwise #f.