logo

policybl
syllabusbl
readingscl
referencesbl

Readings for PLSC 810 for 2012

I. Kinetics of Soil Chemical Processes (Part II. here)

PDF files are available for enrolled students only. Please enter password below

Application of Chemical Kinetics to Heterogeneous Systems

Aharoni, C., D. L. Sparks, et al. 1991. Kinetics of soil chemical reactions: Relationships between empirical equations and diffusion models. Soil Sci. Soc. Am. J. 55: 1307-1312.

Ogwada, R. A. and D. L. Sparks. 1986a. A critical evaluation on the use of kinetics for determining thermodynamics of ion exchange in soils. Soil Sci. Soc. Am. J. 50: 300-305.

Selim H.M., Zhang H. 2007. Arsenic adsorption in soils: second-order and multireaction models. Soil Science 172:444.
Shi, Z., D.M. Di Toro, H.E. Allen and D.L. Sparks. 2008. A WHAM−based kinetics model for Zn adsorption and desorption to soils. Environ. Sci. Technol. 42: 5630–5636.

*Sparks, D. L. 1999. Kinetics and mechanisms of chemical reactions at the soil mineral/water interface. In D. L. Sparks (ed.) Soil Physical Chemistry, CRC Press, Boca Raton, FL

Weber T., Allard T., Tipping E., Benedetti M.F. 2006. Modeling iron binding to organic matter. Environ. Sci. Technol. 40:7488-7493.

Kinetic Methods

*Amacher, M. C. 1991. Methods of obtaining and analyzing kinetic data. p. 19-59. In D. L. Sparks and D. L. Suarez (ed.) Rates of Soil Chemical Processes. SSSA Spec. Publ. No. 27. Soil Sci. Soc. Am., Madison, WI.

Bar-Tal, A., D. L. Sparks, et al. 1990. Analyses of adsorption kinetics using a stirred-flow chamber: I. Theory and critical tests. Soil Sci. Soc. Am. J. 54: 1273-1278.

Carski, T. H. and D. L. Sparks. 1985. A modified miscible displacement technique for investigating adsorption-desorption kinetics in soils. Soil Sci. Soc. Am. J. 49: 1114-1116.

*Fendorf, S. E., D. L. Sparks, et al. 1993. Electron paramagnetic resonance stopped-flow kinetic study of manganese (II) sorption-desorption on birnessite. Soil Sci. Soc. Am. J. 57: 57-62.

*Ginder-Vogel M., G. Landrot., J.S. Fische, D.L. Spark. 2009. Quantification of rapid environmental redox processes with quick-scanning x-ray absorption spectroscopy (Q-XAS). PNAS 106:16124-16128.
Khalid, S., W. Caliebe, P. Siddons, I. So, B. Clay, T. Lenhard, J. Hanson, Q. Wang, A. I. Frenkel, N. Marinkovic, N. Hould, M. Ginder-Vogel, G. L. Landrot, D. L. Sparks, and A. Ganjoo. 2010. Quick extended x-ray absorption fine structure instrument with millisecond time scale, optimized for in situ applications. Rev. Sci. Instrum. 81: 015105
Mitsunobu S., Takahashi Y., Uruga T. 2006. Observation of chemical reactions at the solid-water interface by quick XAFS combined with a column reactor. Analytical Chemistry 78:7040-7043.

Ogwada, R. A. and D. L. Sparks. 1986b. Kinetics of ion exchange on clay minerals and soil. I. Evaluation of methods. Soil Sci. Soc. Am. J. 50: 1158-1162.

*Sparks, D. L. and P. C. Zhang. 1991. Relaxation methods for studying kinetics of soil chemical phenomena. p. 61-94. In D. L. Sparks and D. L. Suarez (ed.) Rates of Soil Chemical Processes. Soil Sci. Soc. Am. Spec. Publ. 27. Soil Sci. Soc. Am., Madison, WI.

*Sparks, D. L., S. E. Fendorf, et al. 1996. Kinetic methods and measurements. p. 1275-1307. In D. L. Sparks (ed.) Methods of Soil Analysis: Chemical Methods Soil Sci. Soc. Am., Madison, WI.

Villinski J.E., O'Day P.A., Corley T.L., Conklin M.H. 1999. A flow-through cell for in situ, real time x-ray absorption spectroscopy studies of geochemical reactions, in: D. W. Morganwalp and H. T. Buxton (Eds.), U.S. Geological Survey Toxic Substances Hydrology Program--Proceedings of the Technical Meeting Charleston South Carolina March 8-12,1999--Volume 1 of 3--Contamination From Hard-Rock Mining, Water-Resources Investigation Report 99-4018A, U.S. Geological Survey, Charleston, South Carolina.

Sorption Kinetics

Ahmed I.A.M., Crout N.M.J., Young S.D. 2008. Kinetics of Cd sorption, desorption and fixation by calcite: A long-term radiotracer study. Geochim. Cosmochim. Acta 72:1498-1512.

*Ainsworth, C. C., J. L. Pilou, et al. 1994. Cobalt, cadmium, and lead sorption to hydrous iron oxide: Residence time effect. Soil Sci. Soc. Am. J. 58: 1615-1623.

*Alexander, M., 2000. Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ. Sci. Technol., 34: 4259-4265.

Arai, Y. and D.L. Sparks. 2002. Residence time effects on arsenate surface speciation at the aluminum oxide-water interface. Soil Sci. 167(5):303-314.

Axe K., Persson P. 2001. Time-dependent surface speciation of oxalate at the water-boehmite (α-AlOOH) interface: Implications for dissolution. Geochim. Cosmochim. Acta 65:4481-4492.

Axe, L. and P. Trivedi. 2002. Intraparticle surface diffusion of metal contaminants and their attenuation in microporous amorphous Al, Fe and Mn oxides. J. Colloid Interf. Sci. 247:259-265.

Backes, C. A., R. G. McLaren, et al. 1995. Kinetics of cadmium and cobalt desorption from iron and manganese oxides. Soil Sci. Soc. Am. J. 59: 778-785.

Bruemmer, G. W., J. Gerth, et al. 1988. Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite: I. Adsorption and diffusion of metals. J. Soil Sci. 39: 37-52.

Casey, W.H., B.L. Phillips, J.P. Nordin, and D.J. Sullivan. 1998. The rates of exchange of water molecules from Al(III)-methylmalonate complexes: The effect of chelate ring size. Geochim. Cosmochim. Acta 62:2789-2797.

Comans, R. N. J. and D. E. Hockley. 1992. Kinetics of cesium sorption on illite. Geochim. Cosmochim. Acta 56: 1157-1164.

Dent, A.J. 2002. Development of time-resolved XAFS instrumentation for quick EXAFS and energy-dispersive EXAFS measurements on catalyst systems. Top. Catal. 18:27-35.

Fendorf, S., M.J. La Force, and G. Li. 2004. Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead. J. Environ. Qual. 33:2049-2055.

Ford, R.G. 2002. Rates of hydrous ferric oxide crystallization and the influence on coprecipitated arsenate. Environ. Sci. Technol. 36:2459-2463.

Garman S.M., Eick M.J., Beck M. 2007. Desorption kinetics of lead from goethite: Effect of residence time and mixing. Soil Science 172:177-188.

Giammar, D.E. and J.G. Hering. 2001. Time scales for sorption-desorption and surface precipitation of uranyl on goethite. Environ. Sci. Technol. 35:3332-3337.

Glover, L.J., M.J. Eick and P.V. Brady. 2002. Desorption kinetics of cadmium2+ and lead2+ from goethite: Influence of time and organic acids. Soil Sci. Soc. Am. J. 66:797-804.

Gräfe, M., and D.L. Sparks. 2005. Kinetics of zinc and arsenate co-sorption at the goethite-water interface. Geochim. Cosmochim. Acta 69:4573-4595.

*Grossl, P. R., M.J. Eick, D. L. Sparks, S. Goldberg and C.C. Ainsworth. 1997. Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ. Sci. Technol 31:321-326.

Grossl, P. R., D. L. Sparks, et al. 1994. Rapid kinetics of Cu (II) adsorption/desorption on goethite. Environ. Sci. Technol. 28: 1422-1429.

He Z.L., Zhang M., Yang X.E., Stoffella P.J 2006. Release behavior of copper and zinc from sandy soils. Soil Sci. Soc. Am. J 70:1699-1707.
Horta M.D., Torrent J. 2007. Phosphorus desorption kinetics in relation to phosphorus forms and sorption properties of Portuguese acid soils. Soil Science 172:631-638.
Jun Y.-S., Lee B., Waychunas G.A. 2010. In situ observations of nanoparticle early development kinetics at mineral/water interfaces. Environmental Science & Technology 44:8182-8189.
Kopinke F.-D., Ramus K., Poerschmann J., Georgi A. 2011. Kinetics of desorption of organic compounds from dissolved organic matter. Environmental Science & Technology 45:10013-10019.

Lee, A.P., B.L. Phillips and W.H. Casey. 2002. The kinetics of oxygen exchange between the GeO4A12(OH)24(OH2) 8+(aq) molecule and aqueous solutions. Geochim. Cosmochim. Acta 66(4):577-587.

Lopez-Periago J.E., Arias-Estevez M., Novoa-Munoz J.C., Fernandez-Calvino D., Soto B., Perez-Novo C., Simal-Gandara J. 2008. Copper retention kinetics in acid soils. Soil Sci. Soc. Am. J 72:63-72.

Lu, Y. and J.J. Pignatello. 2002. Demonstration of the “conditioning effect” in soil organic matter in support of a pore deformation mechanism for sorption hysteresis. Environ. Sci. Technol. 36:4553-4561.

Mikutta C., Lang F., Kaupenjohann M. 2006. Kinetics of phosphate sorption to polygalacturonate-coated goethite. Soil Sci. Soc. Am. J 70:541-549.
Mifflin, A.L., K.A. Gerth, and F.M. Geiger. 2003. Kinetics of chromate adsorption and desorption at fused quartz/water interfaces studied by second harmonic generation. J Phys Chem A 107:9620-9627.

Piatt, J.J., Backhus, D.A., Chapel, P.D. and Eisenreich, S.J., 1996. Temperature-dependent sorption of naphthalene, phenanthrene, and pyrene to low organic carbon aquifer sediments. Environ. Sci. Technol., 30: 751-760.

Pigna M., Krishnamurti G.S.R., Violante A. 2006. Kinetics of arsenate sorption-desorption from metal oxides: Effect of residence time. Soil Sci Soc Am J 70:2017-2027.

*Pignatello, J. J. and B. Xing. 1996. Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 30: 1-11.

*Pignatello, J.J., 2000. The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. In: D.L. Sparks (Editor), Advances in Agronomy. Academic Press, San Diego, pp. 1-73.

Roberts, D.R., A.M. Scheidegger, and D.L. Sparks, 1999. Kinetics of mixed Ni-Al precipitate formation on a soil clay fraction. Environ. Sci. Technol., 33: 3749-3754.

Roberts, D.R., R.G. Ford and D.L. Sparks. 2003. Kinetics and mechanisms of Zn complexation on metal oxides using EXAFS spectroscopy . J. Colloid Interf. Sci. 263:364-376.
Saffron, C.M. 2006. Kinetics of contaminant desorption from soil: Comparison of model formulations using the Akaike Information Criterion. Environ. Sci. Technol. 40:7662-7667.
Saha U.K., Kozak L.M., Huang P.M. 2007. Kinetics of citrate-induced selenite desorption from montmorillonite as affected by complexation with hydroxyaluminum and hydroxyaluminosilicate ions. Clays and Clay Minerals 55:71-88.
Salingar, Y., D.L. Sparks, M. Ghodrati, and G.J. Hendricks. 1994. Kinetics of ion removal from an iron-rich industrial coproduct. I. Chloride. J. Environ. Qual. 23:1194-1200.
Salingar, Y., D.L. Sparks, and J.D. Pesek. 1994. Kinetics of ion removal from an industrial coproduct. II. Sulfate. J. Environ. Qual. 23:1201-1205.
Salingar, Y., D.L. Sparks, and J.D. Pesek. 1994. Kinetics of ion removal from an industrial coproduct. III. Manganese and chromium. J. Environ. Qual. 23:1205-1211.
Sander M., Pignatello J.J. 2007. On the reversibility of sorption to black carbon: Distinguishing true hysteresis from artificial hysteresis caused by dilution of a competing adsorbate. Environ. Sci. Technol. 41:843-849.

Scheidegger, A.M., G.M. Lamble, and D.L. Sparks, 1997. Spectroscopic evidence for the formation of mixed-cation, hydroxide phases upon metal sorption on clays and aluminum oxides. J. Colloid Interf. Sci., 186: 118-128.

*Scheidegger, A.M., D.G. Strawn, G.M. Lamble, and D.L. Sparks, 1998. The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals: A time-resolved XAFS study. Geochimica Cosmochimica Acta., 62: 2233-2245.

Scheinost, A.C., S. Abend, K.I. Pandya and D.L. Sparks. 2001. Kinetic controls of Cu and Pb sorption by ferrihydrite. Environ. Sci. Technol. 35:1090-1096.

Shang J., Liu C., Wang Z., Zachara J.M. 2011. Effect of grain size on uranium(VI) surface complexation kinetics and adsorption additivity. Environmental Science & Technology 45:6025-6031
Shi, Z., D.M. Di Toro, H.E. Allen and D.L. Sparks. 2008. A WHAM−based kinetics model for Zn adsorption and desorption to soils. Environ. Sci. Technol. 42: 5630–5636.

*Steinberg, S. M., J. J. Pignatello, et al. 1987. Persistence of 1,2 dibromoethane in soils: Entrapment in intra particle micropores. Environ. Sci. Technol. 21: 1201-1208.

Strawn, D.G., A.M. Scheidegger, and D.L. Sparks, 1998. Kinetics and mechanisms of Pb(II) sorption and desorption at the aluminum oxide-water interface. Environ. Sci. Technol., 32: 2596-2601.

*Strawn, D.G. and Sparks, D.L., 1999. Sorption kinetics of trace elements in soils and soil materials. In: H.M. Selim and I. Iskandar (Editors), Fate and transport of heavy metals in the vandose zone. Lewis Publishers, Chelsea, MI, pp. 1-28

 Strawn, D.G., and D.L. Sparks, 2000. Effects of soil organic matter on the kinetics and mechanisms of Pb(II) sorption and desorption in soil. Soil Sci. Soc. Am. J., 64: 144-156

Tsang D.C.W., Lo I.M.C. 2006. Competitive Cu and Cd sorption and transport in soils: A combined batch kinetics, column, and sequential extraction study. Environ. Sci. Technol. 40:6655-6661.
Villinski, J.E., P.A. O'Day, T.L. Corley, and M.H. Conklin. 1999. A flow-through cell for in situ, real time x-ray absorption spectroscopy studies of geochemical reactions, In Morganwalp, D.W. and Buxton, H.T., eds., U.S. Geological Survey Toxic Substances Hydrology Program Proceedings of the Technical Meeting, Charleston, South Carolina, March 8-12, 1999, Volume 1, Contamination from Hard Rock Mining: U.S. Geological Survey Water-Resources Investigations Report 99-4018A.

Waltham, C.A. and M.J. Eick. 2002. Kinetics of arsenic adsorption on goethite in the presence of sorbed silicic acid. Soil Sci. Soc. Am. J. 66:818-825.

Wang G., Kleineidam S., Grathwohl P. 2007. Sorption/desorption reversibility of phenanthrene in soils and carbonaceous materials. Environ. Sci. Technol.. 41:1186-1193.
Wendling L.A., Ma Y.B., Kirby J.K., McLaughlin M.J. 2009. A predictive model of the effects of aging on cobalt fate and behavior in soil. Environ. Sci. Technol. 43:135-141.
Yu G., Saha U.K., Kozak L.M., Huang P.M. 2006. Kinetics of cadmium adsorption on aluminum precipitation products formed under the influence of tannate. Geochim. Cosmochim. Acta 70:5134-5145.

*Zhang, P. C. and D. L. Sparks. 1989. Kinetics and mechanisms of molybdate adsorption/desorption at the goethite/water interface using pressure-jump relaxation. Soil Sci. Soc. Am. J. 53: 1028-1034.

Zhou S.W., Xu M.G., Ma Y.B., Chen S.B., Wei D.P. 2008. Aging mechanism of copper added to bentonite. Geoderma 147:86-92.

Kinetics of Dissolution

Bondiette, G., Sinniger, J. and Stumm, W., 1993. The reactivity of Fe(III) (hydr)oxides: Effects of ligands in inhibiting the dissolution. Colloids and Surf., 79: 157-167.

Casey, W.H., and T.W. Swaddle. 2003. Why small? The use of small inorganic clusters to understand mineral surface and dissolution reactions in geochemistry. Rev. Geophysics 41:1008.

*Ford, R.G., A.C. Scheinost, K.G. Scheckel, and D.L. Sparks, 1999. The link between clay mineral weathering and the stabilization of Ni surface precipitates. Environ. Sci. Technol., 33: 3140-3144.

*Scheckel, K.G., A. C. Scheinost, R. G. Ford, and D. L. Sparks, 2000. Stability of layered Ni hydroxide surface precipitates - A dissolution kinetics study. Geochim. Cosmochim. Acta, 64(16): 2727-2735.

Scheckel, K.G. and D.L. Sparks. 2001. Dissolution kinetics of nickel surface precipitates on clay mineral and oxide surfaces. Soil Sci. Soc. Am. J. 65:685-694.

Scheckel, K.G. and J.A. Ryan. 2002. Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite. Environ. Sci. Technol. 36:2198-2204.

Scheidegger, A. M. and D. L. Sparks. 1996. Kinetics of the formation and the dissolution of nickel surface precipitates on pyrophyllite. Chem. Geol. 132: 157-164.

*Stumm, W. and R. Wollast. 1990. Coordination chemistry of weathering. Kinetics of the surface-controlled dissolution  of oxide minerals. Rev. Geophys. 28: 53-69.

Wang L., Ruiz-Agudo E.n., Putnis C.V., Menneken M., Putnis A. 2011. Kinetics of calcium phosphate nucleation and growth on calcite: Implications for predicting the fate of dissolved phosphate species in alkaline soils. Environmental Science & Technology.

White, A.F., and S.L. Brantley. 2003. The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem. Geol. 202:479-506.

Redox Kinetics

*Amstaetter K., Borch T., Larese-Casanova P., Kappler A. (2009) Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environmental Science & Technology 44:102-108.
Bokare A.D., Choi W. 2011. Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle. Environmental Science & Technology 45:9332-9338.
*Borch T., Kretzschmar R., Kappler A., Cappellen P.V., Ginder-Vogel M., Voegelin A., Campbell K. 2010. Biogeochemical redox processes and their impact on contaminant dynamics. Environmental Science & Technology 44:15-23.
Boyanov M.I., O'Loughlin E.J., Roden E.E., Fein J.B., Kemner K.M. 2007. Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: The influence of speciation on uranyl reduction studied by titration and XAFS. Geochim. Cosmochim. Acta 71:1898-1912.
Duff M.C., Hunter D.B., Triay I.R., Bertsch P.M., Reed D.T., Sutton S.R., Shea-Mccarthy G., Kitten J., Eng P., Chipera S.J., Vaniman D.T. 1999. Mineral associations and average oxidation states of sorbed Pu on tuff. Environ. Sci. Technol. 33:2163-2169.
Eliet V., Bidoglio G., Omenetto N., Parma L., Grenthe I. 1995. Characterization of Hydroxide Complexes of Uranium(Vi) by Time-Resolved Fluorescence Spectroscopy. Journal of the Chemical Society-Faraday Transactions 91:2275-2285.
Fendorf S.E. 1992. Oxidation and sorption mechanisms of hydrolyzable metal ions on oxide surfaces, Plant and Soil Sciences, University of Delaware, Newark, Delaware. pp. 251.
Fendorf S.E., R.J.Zasoski 1992. Chromium(III) oxidation by δ-MnO2 .1. Characterization. Environ. Sci. Technol. 26:79-85.
Ferguson M.A., Hering J.G. 2006. TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor. Environ. Sci. Technol. 40:4261-4267.
Ginder-Vogel M., Borch T., Mayes M.A., Jardine P.M., Fendorf S. 2005. Chromate reduction and retention processes within arid subsurface environments. Environ. Sci. Technol. 39:7833-7839.
Ginder-Vogel M., Criddle C.S., Fendorf S. 2006. Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (hydr) oxides. Environ. Sci. Technol. 40:3544-3550.
Ginder-Vogel M., Fendorf S.E. 2008. Biogeochemical uranium redox transformation: Potential oxidants of uraninite, in: M. O. Barnett and D. B. Kent (Eds.), Adsorption of Metals by Geomedia II: Variables, Mechanisms, and Model Applications, Elsevier, Amsterdam, The Netherlands. pp. 293-320.
Ginder-Vogel M., Stewart B.D., Fendorf S. 2010. Kinetic and mechanistic constraints on the oxidation of biogenic uraninite by ferrihydrite. Environmental Science & Technology 44:163-169.
Hansel C.M., Benner S.G., Fendorf S. 2005. Competing Fe(II)-induced mineralization pathways of ferrihydrite. Environ. Sci. Technol. 39:7147-7153.
Hansel C.M., Benner S.G., Neiss J., Dohnalkova A., Kukkadapu R.K., Fendorf S. 2003. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim. Cosmochim. Acta 67:2977-2992.
Jung H.B., Bostick B.C., Zheng Y. 2011. Field, experimental, and modeling study of arsenic partitioning across a redox transition in a bangladesh aquifer. Environmental Science & Technology.
*Kim, J.G., and H.-S. Moon. 1998. Oxidation of chromium (III) to chromium (VI) by a series of synthesized birnessites (δ -MnO2): Kinetics and oxidation capacity. Clay Science 10:363-373.
Kim J., Korshin G.V., Frenkel A.I., Velichenko A.B. 2006. Electrochemical and XAES studies of effects of carbonate on the oxidation of arsenite. Environ. Sci. Technol. 40:228-234.
Kocar B.D., Herbel M.J., Tufano K.J., Fendorf S. 2006. Contrasting effects of dissimilatory iron(III) and arsenic(V) reduction on arsenic retention and transport. Environ. Sci. Technol. 40:6715-6721.
Lafferty, B., M. Ginder-Vogel and D.L. Sparks. 2010. Arsenite oxidation by a poorly crystalline manganese-oxide 1. Stirred-flow experiments. Environ. Sci. Technol. 44:8460-8466.
*Lafferty B.J., Ginder-Vogel M., Zhu M., Livi K.J.T., Sparks D.L. 2010. Arsenite oxidation by a poorly crystalline manganese-oxide. 2. Results from x-ray absorption spectroscopy and x-ray diffraction. Environmental Science & Technology 44:8467-8472.
Lafferty, B., M. Ginder-Vogel and D.L. Sparks. 2011. Arsenite oxidation by a poorly crystalline manganese-oxide 3. Arsenic and manganese desorption. Environ. Sci. Technol. 45(12): 9218–9223.
*Landrot, G., M. Ginder-Vogel and D.L. Sparks. 2010. Kinetics of chromium(III) oxidation by manganese(IV) oxides using Quick Scanning X-ray Absorption Fine Structure Spectroscopy (Q-XAFS) Environ. Sci. Technol. 44 (1): 143–149.
Liu, C.X., B.H. Jeon, J.M. Zachara, Z.M. Wang, A. Dohnalkova, and J.K. Fredrickson. 2006. Kinetics of microbial reduction of solid phase U(VI). Environ. Sci. Technol. 40:6290-6296.
Livi, K.J.T., B. Lafferty, M. Zhu, S. Zhang, A. Gaillota and D.L. Sparks. 2012. Electron energy-loss safe-dose limits for manganese valence measurements in environmentally relevant manganese oxides. Environ. Sci. Technol. 46 (2): 970–976.

*Manning, B.A., S.E. Fendorf, B. Bostick and D.L. Suarez. 2002. Arsenic (III) oxidation and arsenic (V) adsorption reactions on synthetic birnessite. Environ. Sci. Technol. 36:976-981.

Matocha, C.J., Sparks, D.L., Amonette, J.E. and Kukkadapu, R.K., 2001. Kinetics and mechanism of birnessite reduction by catechol. Soil Sci. Soc. Am. J., 65: 58-66.

Mitsunobu S., Harada T., Takahashi Y. 2006. Comparison of antimony behavior with that of arsenic under various soil redox conditions. Environ. Sci. Technol. 40:7270-7276.

Nico, P.S. and R.J. Zasoki. 2001. Mn(III) center availability as a rate controlling factor in the oxidation of phenol and sulfide on σ-MnO2. Environ. Sci. Technol. 35:3338-3343.

Ona-Nguema G., Morin G., Wang Y.H., Menguy N., Juillot F., Olivi L., Aquilanti G., Abdelmoula M., Ruby C., Bargar J.R., Guyot F., Calas G., Brown G.E. 2009. Arsenite sequestration at the surface of nano-Fe(OH)(2), ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefaciens. Geochim. Cosmochim. Acta 73:1359-1381.
Oze C., Bird D.K., Fendorf S. 2007. Genesis of hexavalent chromium from natural sources in soil and groundwater. PNAS 104:6544-6549.
*Parikh, S.J., B.J. Lafferty and D. L. Sparks. 2008. An ATR-FTIR spectroscopic approach for measuring rapid kinetics at the mineral/water interface. J. Colloid Interface Sci. 320:177-185.
*Parikh S.J., Lafferty B.J., Meade T.G., Sparks D.L. 2010. Evaluating environmental influences on AsIII oxidation kinetics by a poorly crystalline Mn-oxide. Environmental Science & Technology 44:3772-3778.
Pedersen H.D., Postma D., Jakobsen R. 2006. Release of arsenic associated with the reduction and transformation of iron oxides. Geochim. Cosmochim. Acta 70:4116-4129.
Power, L.E., Y. Arai, and D.L. Sparks. 2005. Zinc adsorption effects on arsenite oxidation kinetics at the birnessite-water interface. Environ. Sci. Technol. 39:181-187.
Ruby C., Upadhyay C., Gehin A., Ona-Nguema G., Genin J.M.R. 2006. In situ redox flexibility of FeII-III oxyhydroxycarbonate green rust and fougerite. Environ. Sci. Technol. 40: 4696-4702.
Scheinost A.C., Charlet L. 2008. Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products. Environ. Sci. Technol. 42:1984-1989.

*Scott, M.J. and Morgan, J.J., 1996. Reactions at oxide surfaces. 2. Oxidation of Se(IV) by synthetic birnessite. Environ. Sci. Technol., 30: 1990-1996.

Stewart B.D., Nico P.S., Fendorf S. 2008. Stability of uranium incorporated into Fe(hydr)oxide structures under fluctuating redox conditions. Geochim. Cosmochim. Acta 72:A900-A900.

Stone, A.T., 1991. Oxidation and hydolysis of ionizable organic pollutants at hydrous metal oxide surfaces. In: D.L. Sparks and D.L. Suarez (Editors), Rates of Soil Chemical Processes. Soil Sci. Soc. Am., Madison, WI, pp. 231-254

*Tokunaga T.K., Wan J., Lanzirotti A., Sutton S.R., Newville M., Rao W. 2007. Long-term stability of organic carbon-stimulated chromate reduction in contaminated soils and its relation to manganese redox status. Environ. Sci. Technol. 41:4326-4331.
Tokunaga T.K., Wan J.M., Kim Y.M., Sutton S.R., Newville M., Lanzirotti A., Rao W. 2008. Real-time X-ray absorption spectroscopy of uranium, iron, and manganese in contaminated sediments during bioreduction. Environ. Sci. Technol. 42:2839-2844.

Tournassat, C., L. Charlet, D. Bosbach and A. Manceau. 2002. Arsenic (III) oxidation of birnessite and precipitation of manganese (II) arsenate. Environ. Sci. Technol. 36:493-500.

Wang Y., Stone A.T. 2006. The citric acid-(MnO2)-O-III,IV(birnessite) reaction. Electron transfer, complex formation, and autocatalytic feedback. Geochim. Cosmochim. Acta 70:4463-4476.
Wang Y., Stone A.T. 2006. Reaction of Mn-III,Mn-IV (hydr)oxides with oxalic acid, glyoxylic acid, phosphonoformic acid, and structurally-related organic compounds. Geochim. Cosmochim. Acta 70:4477-4490.

Weaver, R.M., M.F. Hochella, Jr. and E.S. Ilton. 2002. Dynamic processes occurring at the Cr III aq-manganite (γ-MnOOH) interface. Simultaneous adsorption, microprecipitation, oxidation/reduction and dissolution. Geochim. Cosmochim. Acta 66(23):4119-4132.

*Weaver, R.M., and M.F. Hochella, Jr. 2003. The reactivity of seven Mn-oxides with Cr3+aq: A comparative analysis of a complex, environmentally important redox reaction. Am. Mineral. 88:2016-2027.
Xu T.L., Cai Y., O'Shea K.E. 2007. Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2 suspensions. Environ. Sci. Technol. 41:5471-5477.
Yang L., Steefel C.I., Marcus M.A., Bargar J.R. 2010. Kinetics of Fe(II)-catalyzed transformation of 6-line ferrihydrite under anaerobic flow conditions. Environmental Science & Technology 44:5469-5475.
Ying S.C., Kocar B.D., Griffis S.D., Fendorf S. 2011. Competitive microbially and Mn oxide mediated redox processes controlling arsenic speciation and partitioning. Environmental Science & Technology 45:5572-5579.

Kinetic Models

Carroll, K. M., M. R. Harkness, et al. 1994. Application of a permeant/polymer diffusional model to the desorption of polychlorinated biphenyls from Hudson River sediments. Environ. Sci. Technol. 28: 253-258.

*Connaughton, D. F., J. R. Stedinger, et al. 1993. Description of time-varying desorption kinetics: Release of naphthalene from contaminated soils. Environ. Sci. Technol. 27: 2397-2403.

*Parikh, S.J., J.D. Kubicki, C. M. Jonsson, C. L. Jonsson, R. M. Hazen, D. A. Sverjensky and D.L. Sparks. 2011. Evaluating glutamate and aspartate binding mechanisms to rutile (α-TiO2) via ATR-FTIR spectroscopy and quantum chemical calculations. Langmuir 27 (5): 1778–1787.

Pedit, J. A. and C. T. Miller. 1994. Heterogenous sorption processes in subsurface systems. 1. Model formations and applications. Environ. Sci. Technol. 28: 2094-2104. 

Weber, W. J., Jr., P. M. McGinley and L.E.Katz. 1992. A distributed reactivity model for sorption by soils and sediments: 1. Conceptual basis and equilibrium assessments. Environ. Sci. Technol. 26: 1955-1962.

Wu, S. and P. M. Gschwend. 1986. Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environ. Sci. Technol. 20: 717-725.

*Zhang, H., and H.M. Selim. 2005. Kinetics of arsenate adsorption-desorption in soils. Environ. Sci. Technol. 39:6101-6108.
Zhang, H., and H.M. Selim. 2006. Modeling the transport and retention of arsenic (V) in soils. Soil Sci. Soc. Am. J. 70:1677-1687.
Zhu, M., C. L. Farrow, J. E. Post, K. J.T. Livi, S.J.L. Billinge, M. Ginder-Vogel and D.L. Sparks. 2012. Structural study of biotic and abiotic poorly-crystalline manganese oxides using atomic pair distribution function analysis. Geochim. Cosmochim. Acta 81:39-55.

* Required Papers

Home | Members | News | Links | Research | Photos | Awards | Alumni | Publications

syllabusbl1syllabusbl