Amy Griffin, a UD neuroscientist, is studying how a mechanism in the brain allows two regions to work together.

The interactive brain

Neuroscientist explores mechanism that can cause deficit in working memory

TEXT SIZE

1 p.m., Sept. 10, 2014--Amy Griffin, associate professor of psychological and brain sciences at the University of Delaware, has received a five-year, $1.78 million grant from the National Institute of Mental Health to support her research into the brain mechanisms of working memory.

A neuroscientist, Griffin has been interested for some time in the interaction between the prefrontal cortex, located at the front of the brain, and the hippocampus, a region in the temporal lobe of the brain. When the two areas fail to work together, that failure appears to be correlated with deficits in working memory, a condition that commonly occurs in schizophrenia, general anxiety and other psychiatric disorders.

Research Stories

Chronic wounds

UD's Millicent Sullivan and Kristi Kiick have received a $1.4 million grant from the National Institutes of Health for research that could provide a new approach to the treatment of chronic wounds.

Prof. Heck's legacy

The American Chemical Society is highlighting the legacy of the late Nobel laureate Richard Heck, the Willis F. Harrington Professor Emeritus of Chemistry at the University of Delaware with a digital tribute on its publications website.

The hippocampus is the portion of the brain responsible for memory, while the prefrontal cortex controls executive function, a term that includes such cognitive abilities as problem-solving, planning and abstract thinking.

“These are two areas of the brain that are far apart, but their oscillations [rhythmic activities] are synchronized,” Griffin said. “When one area is active, so is the other.”

Working memory, sometimes called short-term memory, is “the kind of memory that fails when you walk into a room and forget why you came there,” she said.

When the oscillations in the hippocampus and prefrontal cortex are out of sync, deficits of working memory occur. In those cases, Griffin said, “both regions are active, but they’re not talking to each other.” The mechanism that causes that lack of communication has not been well explored, and her research will seek to do that.

Griffin and her research team plan to conduct two types of experiments. One will inhibit activity in a brain region called the nucleus reuniens, a region that is hypothesized to synchronize the hippocampus and prefrontal cortex and is expected to cause impairments with working memory. In the other experiment, researchers will activate the nucleus reuniens to increase synchrony, hoping to learn if that improves working memory.

The research will employ a cutting-edge technique called optogenetics, a process that uses proteins to make neurons sensitive to light and then uses light to control them. 

“Optogenetics is becoming a common technique,” Griffin said. “It’s a way to study these processes on a millisecond timescale.” 

A 2013 article in the journal Nature Neuroscience said optogenetics “is transforming the field of neuroscience. For the first time, it is now possible to use light to both trigger and silence activity in genetically defined populations of neurons with millisecond precision.”

Griffin, using a rat model, will inject the light-sensitizing substance — a harmless virus — into the nucleus reuniens and then use a laser to inhibit or activate this brain region. The rats then perform tasks that assess their working memory. Synchronization between the hippocampus and prefrontal cortex will also be recorded, with the prediction that the degree of the working memory impairment will be correlated with reductions in synchrony.

“Our experiments will not be interfering with the activities of the hippocampus or the prefrontal cortex within themselves,” Griffin said. “We want to affect only the ability of the structures to talk to each other.” 

Article by Ann Manser

Photo by Ambre Alexander Payne

News Media Contact

University of Delaware
Communications and Public Affairs
302-831-NEWS
publicaffairs@udel.edu

UDaily is produced by
Communications and Public Affairs

The Academy Building
105 East Main Street
University of Delaware
Newark, DE 19716 | USA
Phone: (302) 831-2792
email: publicaffairs@udel.edu
www.udel.edu/cpa