OXIDATION AND SORPTION KINETICS OF ARSENIC ON A POORLY CRYSTALLINE MANGANESE OXIDE

by

Brandon J. Lafferty

A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant and Soil Sciences

Summer 2010

© 2010 Brandon J. Lafferty All Rights Reserved

ABSTRACT

Manganese oxides (Mn-oxides) are some of the most reactive minerals in the environment, and are known to readily oxidize toxic arsenite (As^{III}) to less toxic arsenate (As^V). However, As^{III} oxidation by Mn-oxides can be quite complex, involving many simultaneous reactions. Also, when As^{III} is oxidized by Mn-oxides, a reduction in the oxidation rate is often observed, which has been attributed to Mnoxide surface passivation. Although As^{III} oxidation by Mn-oxides has been studied, fundamental understanding of the mechanisms of As^{III} oxidation, and subsequent Mnoxide passivation by poorly crystalline, layered Mn-oxides (i.e. phyllomanganates), is lacking. In stirred-flow experiments, As^{III} oxidation by δ -MnO₂ (a poorly crystalline phyllomanganate) is initially rapid but slows appreciably as the mineral surface became passivated. Mn^{II} is the only reduced product of As^{III} oxidation by δ -MnO₂ during the initial period of the reaction, indicating that As^{III} oxidation does not proceed through a Mn^{III} intermediate. Also, X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) show that Mn^{II} sorption is the primary cause of δ -MnO₂ passivation during the early periods of As^{III} oxidation. There is also evidence that formation of Mn^{III} observed in previous studies is a result of conproportionation of Mn^{II} sorbed onto Mn^{IV} reaction sites of δ -MnO₂. It is possible that Mn^{III} formed through $Mn^{II / IV}$ conproportionation also plays a role in δ -MnO₂ passivation. Only As^V is observed bound to δ -MnO₂ during As^{III} oxidation, and it is present in several adsorption complexes that change as the Mn^{III} content in δ -MnO₂ increases. Although As^V is directly bound to the δ -MnO₂ surface, a significant fraction is quite mobile. These findings show that As^{III} oxidation by poorly crystalline δ -MnO₂ involves several simultaneous reactions and emphasizes the importance of Mn oxidation state in the reactivity of Mn-oxides. Also demonstrated is the value of studying reaction mechanisms over a range of time scales.