
 1

Network Management: Open Source Solutions to
Proprietary Problems

 Shane O’Donnell
OpenNMS

975 Walnut St., Suite 242
Cary, NC 27511
1.919.368.7415

shane@opennms.org

1. ABSTRACT
The deployment of network management technologies in most
college and university environments is similar to network
management deployments in large enterprises in the private
sector; most contain some remnants of a failed deployment of one
of the “framework” tools. However, in academia, there is usually
a follow-on deployment of some set of open source network
management tools which support daily operations.

This paper will provide a comparative survey of the more popular
open source tools, addressing their strengths and weaknesses, and
discuss some of the “next generation” open source network &
systems management tools. For a definition of “open source”,
please see [1].

1.1 Keywords
network management, HP, OpenView, IBM, Tivoli, CA,
Unicenter, Cabletron, Spectrum, Aprisma, snmp, UCD, CMU,
gxsnmp, mrtg, router, performance, monitor, scotty, tkined,
network map, cheops, cheops-ng, tcpdump, snort, ethereal, iptraf,
libpcap, snmp sniff, rrd tool, rrdtool, event monitor project,
emonitor, mon, big sister, opennms, bluebird, synthetic
transactions, synthetic transaction, availability, reporting, Java,
Swing, XML, XSL, JDBC, Postgres, Oracle, scalable, scalability,
distributed, master station, distributed poller.

2. THE PROBLEM
It’s a pretty common occurrence. The one person that knows the
network inside and out, built it from scratch, and tended to it like
it was their progeny, just gave their notice. The company down
the street wooed them with promises of higher salaries and shorter
working hours. And what’s worse, this common occurrence is
happening in private industry. Education, with the lowest average
compensation by industry for IT professionals (including not-for-
profits), doesn’t stand a chance in an industry where 80% of
employees leave for better pay [2].

But high turnover is a known problem in the industry as well as

the educational sector—this is not news. However, one of the
situations it creates is at the root of our problem. Infrastructure
managers responsible for network availability and reliability,
when stymied by loss of key employees, are often provided
budgets that allow them to at least partially address their
problems. The resulting scenario leaves a responsible manager
with a significant budget and a worthy goal, a dependable
network. This manager has just made themself a sitting target for
the “framework” vendors. Sales personnel from HP, IBM, CA,
and Aprisma (formerly Cabletron’s network management tool
division) [3] sell their tools as “plug and play” solutions, and
despite their high price tags, the noble manager pursues the option
presented: an integrated solution to provide availability and
performance information, event correlation, and automation with
the addition of no new personnel roles.

A lofty goal indeed, but according to the Gartner Group, 70% of
enterprise management packages are neither fully implemented
nor meeting user needs and expectations within three years of
their deployments [4]. An analyst from the Hurwitz Group argues
in [4] that the number of successful deployments in this same
timeframe more closely “approximates zero”. Regardless, our
example manager’s laudable efforts have likely been rewarded
with a fragmented, partial solution, while the software support
bills continue to arrive. In an effort to save face, the initial target
is inevitably lowered to providing basic network management
functionality, and in many cases, this involves either augmenting
or replacing the costly “framework” solution with no-cost
alternatives readily available on the web, or skunk-works projects
that provide quick and dirty, temporary solutions to the problem
at hand.

One is likely to pose the question, “Why weren’t these options
pursued up front?”. In all likelihood, they probably were, but
with some of the inherent drawbacks in the current tools
themselves, and a “framework” sales person making regular visits
to assure the manager that “you get what you pay for”, they were
eventually dismissed.

However, we’ve recently entered a period in which new open
source tools have begun to emerge and existing tools are
beginning to re-invent themselves, addressing the needs of the
larger network installations.

3. THE TOOLS
The existing open source tools can be broken up into five
subgroups: SNMP agents, data collection/presentation tools,
network mapping tools, network protocol analysis tools, and
network and systems monitors

 2

3.1 SNMP Agents
As SNMP is the de facto standard in network management [5],
one of the first challenges for deploying an SNMP-centric
management system is proliferating SNMP agents to systems
which may not provide one by default. In most cases, enterprise-
class network hardware ships with some level of SNMP support,
however, as many systems are now serving infrastructure roles,
whether a departmental Linux-based router or an Intranet server,
the deployment of SNMP agents to these boxes is critical to
incorporate them in an enterprise management solution.

3.1.1 CMU SNMP
A project originally born at Carnegie-Mellon University by Steve
Waldbusser, one of the original authors of SNMPv2 [6], the CMU
SNMP project [7] sees little active development. Most of the
current efforts come from the Linux CMU SNMP Project, a
focused effort to port the CMU SNMP libraries to Linux, led by
Jürgen Schönwälder and Erik Schönfelder [8].

The early work of the CMU SNMP project was truly
groundbreaking, as it provided the first commercial-grade
SNMPv2 libraries under an open source license. However, with
the advent of other projects to extend that initial work, the CMU
SNMP project has evolved into the AgentX project [9], focused
on building a reference implementation of an RFC 2741-
compliant SNMP agent [10]. Even with this new focus, the
project has been overshadowed by other efforts and has found
little interest within the development community.

The latest release from the CMU team was released in October
1998, while Schönwälder and Schönfelder have released updated
and more feature-rich versions as late as July 1999.

The CMU SNMP project, its follow-on AgentX project, and the
off-shoot Linux CMU SNMP project all focus on delivering
SNMPv1 and SNMPv2-compliant libraries and agents, written in
C, and ported to most Unix and Unix-like platforms, as well as
Windows NT.

3.1.2 UCD-SNMP
The current leader for product functionality, standards-
compliance, and adoption speed for new technologies and
standards, the UCD-SNMP project’s code was initially based on
version 2.1.2.1 of the CMU SNMP project [11]. However, since
that initial release, the code has been greatly enhanced, with
several significant features added, including support for SNMPv3,
several command line SNMP tools, and a graphical MIB browser,
as described in [11].

The UCD-SNMP project is today the choice of network managers
for open source SNMP agents and libraries, and has announced a
new release as recently as May 5, 2000.

The UCD-SNMP project, much likes the CMU SNMP project,
delivers its RFC 2741-compliant agent and libraries as C source,
available under an open source license, and is available for most
Unix and Unix-like platforms, as well as both Windows NT and
Windows 9x.

3.2 Data Collection/Presentation Tools
It is likely that the area of data collection is where the greatest
amount of skunk-works projects begin. This likelihood is most
easily argued because data collection in SNMP environments is

relatively simple and is easily automated. The UCD-SNMP
project provides a command-line tool to execute an SNMP GET
transaction, which allows the user to request a specific stored
value. Additionally, Perl modules exist for both the UCD -SNMP
and CMU SNMP libraries which provide a very easy way to script
and automate data collection.

The differences in SNMP data collection with open source tools
come in two primary areas: their threading capabilities and their
means of storing the data once retrieved. Both of these aspects
will be accentuated in the following discussion of data collection
tools.

3.2.1 MRTG & RRDTool
MRTG, or the Multi-Router Traffic Grapher, was originally built
as a set of Perl scripts by Tobias Oetiker in 1995 [12]. It provides
the capability to not only collect data from SNMP-manageable
devices, but also to graphically represent that data in an HTML
page, so it can easily be web-accessible. MRTG almost single-
handedly introduced the network management community to open
source tools, and it (and its derivative packages) still reigns as one
of the most popular tools deployed in college and university
network operations centers.

Figure 1. MRTG Graph Example

Due to its original architecture in Perl (pre-threads) and associated
performance problems, MRTG suffered from crippling
performance problems. Soon after its initial release, Dave Rand
emerged as a worthy co-author, and converted the time-sensitive
code to C, improving performance by a factor of 40.

However, even with the performance optimization, the MRTG
still suffered from basic architectural flaws which have hampered
its ability to scale, including its lack of support for threads, its
ability to only retrieve and store two pieces of data from each
device, and its data storage requirements, which stymies
scalability with extremely inefficient reads and writes.

Fully aware of these limitations, Oetiker temporarily suspended
development on the next version of MRTG (MRTG 3.0) while
work was completed on a new underlying data store for the
product, known as RRDTool [13]. RRDTool, an acronym for
Round Robin Database tool, provides a fixed-size database with
automatic data consolidation, or the packing of time-series data to
allow space for new data being acquired. It also provides support
for storing more than two values per device (originally intended
for input bandwidth/output bandwidth in MRTG), as well as a
float data type versus MRTG’s support for integer alone [14].

With the introduction of RRDTool and the development of
MRTG 3.0 suspended until RRDTool’s completion, other tools
entered in the marketplace that improved on MRTG and leveraged
RRDTool, exactly what Oetiker had hoped to do with MRTG 3.0.

 3

RRDTool is written in C and is available for most Unix and Unix-
like platforms, as well as with instructions for building on
Windows platforms.

3.2.2 Cricket
Jeff R. Allen’s Cricket has proven to be the most popular of the
tools built to front-end the RRDTool [15]. A result of Allen’s
work at WebTV, Cricket emerged due to a combined dependence
on MRTG for network information and early signs that MRTG
wasn’t going to scale to WebTV’s rapidly growing network.

Figure 2: Cricket Web Page Example

While Cricket is certainly a worthy tool for review, it really only
duplicates MRTG’s basic functionality and leverages the benefits
of RRDTool, which itself provides a 1-2x performance
improvement over the I/O inefficiencies in MRTG’s original
database [14]. However, in duplicating MRTG’s functionality,
Cricket also inherits some of the design flaws that prevent true
scalability, including a single-threaded data collector and
implementation in Perl, which while impacting performance, pales
when compared to the impacts of wait times in a single-threaded
collector mechanism. Due to its innovative tree approach to
configuration and the ability for multiple instances of Cricket to
use differing sub-trees for their configuration source, Cricket can
be paralleled in an effort to overcome its threading limitations
[14]. This has been thought out by the Allen and his design team,
but its actual implementation is still a workaround for a lack of
native threading within the application.

If selecting an open source tool for data collection and
representation of SNMP-based values, Cricket is today’s obvious
choice, with some other worthy alternatives mentioned at [15].
The key to all of these tools, though, is the underlying technology
provided in Oetiker’s RRDTool.

3.3 Network Mapping Tools
Inherently, network mapping tools are fraught with scalability
problems, as there is only limited “real estate” on an operator’s

monitor and as nodes are added and iconically represented, their
size, recognizability, and label readability must decline.
Additionally, most map-based tools, including the commercial
“framework” tools, mandate some amount of operator-
intervention for map maintenance at potential costs of hundreds of
thousands of dollars [16], or the addition of even more
commercial software to automate this role.

Network mapping tools that map based upon the topology of the
network also introduce an interesting question: which OSI layer’s
topology is the right one to use? With the advent of switched
networks and Layer2/3/4 switches, the question about topology-
based mapping has only gotten cloudier. Most tools that provide
topology-based maps, including the “framework” tools, have
settled on Layer 3 topology, but even these tools have experienced
technical problems and product false-starts in attempting to
support Layer 2 topology mapping.

3.3.1 Scotty/Tkined
Written by Leonid Furman, Konrad Zufelde, and Jürgen
Schönwälder (referenced earlier as developer behind [7]), Scotty
is arguably a data collection tool, as in its own right, it provides a
shell with Tcl extensions to access various TCP/IP network
related information [17]. It is one of the few open source tools
with the ability to query network-related services such as DNS,
NTP, and others, as well as being intentionally designed for
scripted use with Tcl. However, in its typical deployment, it is
coupled with Tkined, or the Tk Independent Network Editor.

Scotty/Tkined together provide the ability to discover and map
TCP/IP networks, as well as providing a Layer 3 topological
layout, troubleshooting and network monitoring tools. Quite
functional in smaller, static networks, Scotty/Tkined enjoys a
significant user base.

Figure 3: Scotty/Tkined Map Example

However, due to critical design flaws, future work on Tkined has
been abandoned pending a complete redesign [18], and
unfortunately, it appears that the redesign effort has been tabled
due to lack of resources.

 4

Current development efforts on Scotty are exclusive to the Tnm
Tcl extensions, and the primary focus of the team is to add
SNMPv3 support.

Scotty is built in Tcl and requires Tcl 7.6 or higher (Tkined
requires Tk 4.2 or higher). It is currently available for most Unix
and Unix-like platforms, with limited support for Windows NT.

3.3.2 Cheops
Originally written by Mark Spencer and with any current
development being attributed to Adtran, Inc., Cheops claims to be
the network “swiss army knife”, providing mapping functions on
par with HP’s OpenView [19]. Cheops provides mapping based
on the results of traceroute and mtr [20] and also does limited host
identification based on QueSo. With network port scans and host
identification built into the product, it is arguably as much a
network security tool as a network mapping tool, and is often
considered a hacker tool. Spencer acknowledges this use of the
product in its accompanying documentation [19], while decrying
its use in this way.

Alternative information sources indicate that development on
Cheops may have been abandoned [21], and a follow-on project
named “Cheops-NG” (“Cheops-Next Generation”) is underway
[22].

Figure 4. Cheops-NG Example, showing output from default

port scan of target device.

3.4 Network Protocol Analysis Tools
The options for open source protocol analysis tools are amazingly
broad and as such, several of the more common, relevant, or high
quality tools will be mentioned here with brief descriptions, but a
detailed comparison within this category is outside the scope of
this paper and will not be provided.

3.4.1 tcpdump
Arguably the most common network capture tool, tcpdump is
included with most of the major Linux distributions. Written and
maintained by the Network Research Group (NRG) of the
Information and Computing Sciences Division (ICSD) at
Lawrence Berkeley National Labs (LBNL) [23].

Tcpdump is somewhat erroneously named, in that when executed,
it listens promiscuously on the default network adapter for not
only TCP traffic, but any IP traffic. It also supports command line
options to store and replay captures, filter at capture or replay
time, and select the adapter to listen on. It is quite configurable,
but also quite simple to use for brute force network analysis.

Tcpdump’s most important contribution is less the tool itself, and
moreso the accompanying libpcap, the protocol capture library for
Linux which most other protocol analysis tools for that platform
leverage, as referenced in [23].

3.4.2 SNORT
Snort, by Martin Roesch, is a libpcap-based network capture tool,
but with intelligence built-in that it not only does packet capture,
but also packet logging for advanced TCP/IP network analysis,
and even security-focused intrusion detection [24].

Snort’s intrusion detection capabilities can be used while
capturing in real-time or in post-analysis of previous captures,
including captures taken natively by tcpdump.

3.4.3 Ethereal
Probably the most feature-rich of the open source protocol
analyzers, Ethereal was initially written by Gerald Combs, with
ongoing development provided by a sizable team [25].

Ethereal too uses the libpcap library, so in turn, users can unleash
its powerful display capabilities against previous tcpdump
captures.

3.4.4 iptraf
Gerard Paul Java’s iptraf is a statistical analysis tool with a clean
and very usable curses interface for Linux [26]. Since iptraf was
built to leverage some of the built-in networking features in the
Linux kernel, its portability is limited compared to some of the
other tools (which are constrained by the porting of libpcap to
other platforms).

Iptraf provides statistical information on conversation pairs,
protocols, and packets, and is better suited for a higher-level
network analysis than true packet captures. However, if used
correctly, iptraf is a very powerful and easy to use tool.

 5

Figure 5. Iptraf Traffic Monitor Example

3.4.5 SNMP Sniff
The final in our list of protocol analyzers, SNMP Sniff’s
functionality is quite well focused and for network managers with
SNMP-related problems, it saves the step of having to manually
define a capture filter for another protocol analysis tool.

Written by Nuno Leitao, SNMP Sniff’s obvious focus also
provided the author with the ability to do better PDU decodes
than many of the other packages described here [27], which
makes this tool ideal for the network manager. Often, this tool is
deployed in network operations centers even if an expensive
“framework” tool has been deployed as well, as none of the
“frameworks” include a tool with similar functionality. Even if
used only for troubleshooting other tools, it is well worth an
administrators time and effort to download and build this tool,
adding it to their respective “bag of tricks”.

SNMP Sniff has dependencies on libpcap as well as CMU SNMP.
And with the appropriate curses libraries and Perl modules
installed, SNMP Sniff can also serve as a statistical monitor for
SNMP, as shown in Figure 6.

Figure 6. Example of snmpstat from the SNMP Sniff package

3.5 Network and Systems Monitors
This subgroup of network management is considerably larger than
the others, if you consider sheer numbers of entrants. This is
mainly due to the plethora of system administration tools that
contain some sort of alerting functionality. If a tool’s primary
focus is systems administration and not monitoring, it will not be

discussed in depth in this paper. However, several tools in this
group merit mention, including the following:

Table 1. Overview of Open Source
Systems Administration Tools

Tool Name Description

PIKT

The “Problem Informant/Killer Tool” is a
sysadmin-focused scripting environment with
auto-execute alarm capabilities [28]. A
powerful tool, but can be quite labor-intensive
to deploy.

GAP

The “GNU Administration Project” provides a
CORBA-based distributed architecture to
allow execution of system admin functions on
multiple platforms [29].

Linuxconf

A local/remote administration tool for Linux,
this tool is the de facto standard in the popular
distributions today, but only handles
administration on a machine-by-machine basis
[30].

The remainder of the products discussed in this section will have
significant portions of their architecture dedicated to monitoring
remote network devices, systems, and/or services.

3.5.1 GxSNMP
GxSNMP, under the guiding hand of Jochen Friedrich and a small
team of developers, is probably the closest any existing open
source application has come to rivaling the appearance of one of
the “framework” tools [31]. It has a very rich set of GUIs, but its
underlying network monitoring/polling components are “under
construction” [32], which is unfortunate, given the projects
otherwise promising, if aggressive, goals.

Figure 7. Example of GxSNMP’s Map-based GUI

The development efforts of the GxSNMP team have been very
typical of unfunded, large-scope open source development
efforts—the development is slow and irregular, but the resulting
code is sound. Most of the recent releases of GxSNMP have been
bug-fix releases and the last significant development initiative was
begun in April 1998, with work beginning on a network discovery
algorithm.

 6

Figure 8. An Architecture Diagram from

the GxSNMP Project
This project has a strong core team with knowledgeable
developers, but in an effort to deliver a basic level of
functionality, distributed network monitoring has been pulled out
of the development until some later date, as noted in [31]. This
will likely result in an awkward, retrofit implementation of
distributed monitoring, as has happened with HP and IBM’s
“framework” tools.

Additionally, the project’s dependence on a map-based GUI will
introduce an unnecessary degree of maintenance in large
enterprise environments, offsetting many of the benefits of a
network management platform, as described in [16].

3.5.2 The Event Monitor Project (Emonitor)
The Event Monitor Project, a one-man effort led by Juan Casillas
(half of the Gnome Administration Project team, referenced in
Table 1), is an agent-based approach to monitoring remote
systems [33]. While the architecture and plans call for system-
centric network monitoring capabilities as well as other features,
the only agent piece that exists in production today is the the
emdskagt (disk monitoring functionality). Despite this, the
architecture for server-agent communications is in place and is
reasonably extensible.

Figure 9. Architectural Overview of the Emonitor Project

One of the more interesting aspects of the Event Monitor Project
is that it takes an event-centric approach to the user interface
level, providing an event browser as the only graphical interface.
This “browser only” approach, while arguably better than the
“map only” approach of other tools, will find difficulties in
environments where the event frequency is higher than a user can
address the issues. These tools are also likely victims of “event
storms”, a situation in which a misconfigured device can cause
itself of other devices to generate large amounts of messages to a
management platform.

Figure 10. The Event Browser from the

Event Monitor Project
The Event Monitor Project is focused specifically on Unix and
Unix-like platforms, and in turn, is written in C and leverages
Tcl/Tk for the server-side GUIs. This limitation, coupled with the
absence of an underlying database (it leverages log files) and
potential security concerns with server-agent communications will
likely stymie an headway this otherwise feature-rich tool might
make into the enterprise marketplace.

3.5.3 Mon
No discussion of open source tools in monitoring would be
complete without mention of mon. A widely-used tool for service
monitoring and notification, mon is described as a “service
monitor daemon” by its primary author, Jim Trocki [34]. Mon
has both client and server components, a web interface, and
product independent monitors which are simply invoked by the
client.

Due to its reliance on Perl alone, both the client and server
components are very portable, and mon ships with several
notification scripts, which when coupled with other open source
tools, provide the ability for email, alphanumeric page, and
SNMP trap-based notification.

Mon is a very effective product in its niche, but most enterprises
require operator interfaces, and mon’s web interface was not
designed to provide this functionality. Although, the possibility
of coupling mon with another tool to leverage its focused
functionality could make mon a significant player in an enterprise
NOC.

3.5.4 Big Sister
Annoyed by the limitations and licensing requirements of Big
Brother, a quasi-commercial monitoring tool [35], Thomas Aeby
built a project around replacing and extending its functionality.

Big Sister is a Perl-based service monitor with a web-server front-
end and a client-server architecture, which Aeby describes in his
architecture as agent (client) and status collector (server) [36].
The Big Sister agent can run on any platform with Perl 5.002 or

 7

later and when configured, will check the status of a variety of
services, with user extensibility possible. The agent serves three
basic functions in Big Sister’s architecture: to provide a
distributed monitoring capability, to provide updates to the status
collector, and to provide easier extensibility for platforms running
services that are not monitored by default.

Figure 11. Big Sister’s Agent Architecture

The status collector, Big Sister’s server component, is responsible
for maintaining the log of events from each of the agents, as well
as interfacing to the notification system (which is not included in
the distribution.

Figure 12. Big Sister’s Distributed Architecture

Much like mon before it, Big Sister is constrained almost solely
by its user interface, which is vastly improved over mon’s.

Figure 13. Big Sister’s Web Interface

Big Sister’s web interface only provides snapshot views, with no
ongoing view of the network as status changes occur without
constant refreshes. The absence of an event browser will likely
prevent Big Sister from progressing into the enterprise
marketplace, but like mon, is very effective in its niche role as
well as in smaller NOCs.

4. Next-Generation Tools
The tools described above, and combinations thereof, can and do
provide core network management functionality in many of
today’s college and university networks. But with the ongoing
growth in demand for IT resources in educational environments,
yesterday’s boutique tools are not well-positioned to provide the
necessary scalability and distribution demands placed on today’s
university IT departments.

New technologies are emerging in network management, amongst
which is the inevitable XML, positioned for potential broad-
sweeping changes across many disciplines, as discussed in [5].
None of the tools mentioned above have addressed the potential
for XML’s introduction into network management, although many
network element providers have already announced strategic plans
to include the technology [37].

And with no exceptions, due to a reliance on C and early Perl,
multi-threaded applications are not to be found in our discussion.
Yet, given the nature of network management processing and the
excessive amount of CPU time left idle due to network

 8

transmission-induced wait states, threads are the last best answer
for scalability and performance improvement.

The next-generation applications to emerge, whether closed or
open source, must address these needs. And within the open
source fray, there is only one such project that promises to address
these needs—OpenNMS’ Bluebird Project.

4.1 OpenNMS’ Bluebird Project
Originally architected by Steve Giles and implemented by Brian
Weaver, the Bluebird Project has aggressive plans and lofty goals.
As stated in their design goals, there are two primary areas where
the project intends to differentiate itself from the field: it will
leverage emerging technologies, including Java, XML, and XSL,
and it will leverage what Giles has termed “synthetic
transactions”, or a lightweight test to exercise the protocols
related to services that a platform might offer, such as FTP,
SMTP, et al. [38].

Table 2. Bluebird Project First Release Functionality

Functionality Description
Network

Discovery ICMP-based discovery of TCP/IP networks

Capability
Checking

An interface-level analysis of services
provided by the host, augmented by SNMP
information, if a configured agent is present.

Status Polling ICMP-based polling for interface
reachability

Service Polling Protocol-level polling of HTTP, SMTP,
DNS and FTP services

Distributed
Architecture

Full distribution capabilities, including
distributed pollers and master station(s).

Java-based
User Interface

A real-time user interface to reflect network
changes as soon as they are realized to the
master station.

Data Reporting Report data available in XML with XSL
capabilities.

Business Views

Topological maps have been eschewed in
deference to a view of the network that
groups devices into customer-defined
groups.

Graphical Rule
Builder

Java-based tool with drag-and-drop
metaphor to allow users to build rule sets by
which Business Views are defined.

Configuration
Panels

Java-based tools to configure both the
master station and distributed pollers. All
configurations are then stored in XML to
allow manipulation by any XML
editor/tool.

Ranging/
Filtering

Ability to restrict discovery to specific IP
ranges, as well as to restrict the monitored
nodes by IP range or rule set.

Scheduling Ability to define one-time or recurring
periods of planned outage.

Event
Subsystem

SNMP trap receiver as well as listeners to
receive XML events, each of which are
processed/correlated and populated to event
browser and/or an automated action is
invoked.

The team at OpenNMS has also taken an architectural approach to
scalability and distribution, arguing that the ultimate scalability
cannot be introduced after the fact and must be incorporated from
the earliest design phases.

Initially targeting an initial production release in 4Q00,
OpenNMS has identified a list of basic functionalities that are
planned for the initial release, including the elements outlined in
Table 2.

4.1.1 User Interface
One of the most obvious differences between the Bluebird Project
and other tools is its use of histograms representing
devices/services in lieu of a map-based interface. This
accomplishes three basic goals for the design team: the
administrative overhead associated with maps is avoided, the
topology argument is mute, and the visual representation can more
closely approximate the end user’s view of the network (or in
many cases, management’s view of the network).

Additionally, each histogram is actually the top-most point in a
tree of histograms, each successively representing specific
devices, time frames, and eventually, an event browser specific to
a device over some given time period.

Figure 14. The Bluebird Project’s Real-Time Console

4.1.2 Distributed Architecture
The Bluebird Project has embraced the concept of monitoring
networks with remote sites, and has architected their solution to
address the possible bandwidth constraints that often accompany
these remote sites. In their architecture, a distributed poller, or a
system responsible for discovery and status/service polling of
network-attached devices, can be deployed in a remote site so that
all discovery and polling-related traffic remains local to that
network and need not traverse the WAN segment.
Communications between the distributed poller and the master
station, or the system responsible for maintaining the centralized
database and providing reporting and end-user interfaces
functions, can be via “push” or “pull” mechanisms. With this
option, distributed pollers are being built to allow for up to one
day with no contact between between the poller and the master
station, to allow for potential network outages.

 9

Additionally, the design team at OpenNMS has applied a degree
of social conscience to their use of bandwidth. With their concept
of “bandwidth trolls”, the Bluebird Project software can be self-
regulating in its use of network resources, and users can control
by percentage of overall bandwidth and time period (repeating
schedule) how much traffic a distributed poller is allowed to
generate.

4.1.3 Synthetic Transactions
Relying on ICMP for availability information creates an inevitable
fallibility; if a system responds to an ICMP echo request (e.g.,
ping), it has validated nothing beyond Layer 3 reachability, not
availability of any services. The Bluebird Project addresses this
with a concept of synthetic transactions, or a lightweight
implementation of a protocol client that actually exercises a
services protocol. For example, an SMTP-based synthetic
transaction might include the establishment of a TCP socket
connection to port 25, the receipt of an SMTP banner, the
issuance of a HELO command, and the receipt of a 250 “Hello”.
While this does not actually generate and force delivery of an
email, it does prove that a server exists on port 25 and is capable
of receiving and responding to standard SMTP transactions. This
is well-beyond the capabilities of any of the ICMP-centric tools
discussed earlier.

Figure 15. The Bluebird Project’s Functional Design

4.1.4 Graphical Administration Capability
A duality in configuration options is almost an unspoken
requirement in enterprise network management packages today.
Complex configurations are often simplified with graphical tools,

yet large-scale configurations often need to be built by script or
export. The Bluebird Project has addressed both of these needs
with their configuration panels.
The “Administrator Mosh Pit” is a blank canvas which allows
users to add their own icons which in turn invoke user-defined
applications. The “Mosh Pit” ships with the Bluebird
administrative tools defined, including the Graphical Rule
Builder, to allow for definition of the business views. This tool
simplifies the often confusing Boolean logic rules that are
necessary in defining rule sets. However, the tool also provides a
text entry box, allowing knowledgeable administrators to simply
enter their own rule. And once the configuration is saved, it is
built in XML, so any future updates (or a complete replacement)
can be built manually or by script.

Figure 16. The Bluebird’s Project Graphical Rule Builder

4.1.5 Underlying Technologies
Due to the nature of network management tools, much of the
possible processing time is wasted in wait states, blocking for
receipt of a message from a network device. The best way to
address this is through the use of threads, which allows the system
to process more than one transaction seemingly at the same time,
as well as to distribute the processing associated with those
transactions over multiple processors.
Following an aborted attempt to build threaded libraries for C++,
the project team converted to Java2, using Sun’s JDK 1.2.2. This
provided three key pieces to the puzzle: native threads, platform
independence (or restrictions only on platforms with a Java2 run-
time environment), and a shorter development cycles with Java’s
rich development environment.
The team has also been to leverage work from the Apache project
[39] and IBM [40] to help shorten development cycles,
specifically in their respective work to provide hooks between
Java and XML.

4.1.6 Risks Associated with Open Source
The biggest risk that any open source project runs is to bite off too
much for an initial deployment, allowing the window of

 10

opportunity to pass while working toward first release. To avoid
this, OpenNMS has sought institutional funding for the Bluebird
Project, in an effort to staff a full-time development team focused
on bringing the initial release to market.

4.1.7 Code Releases
The Bluebird Project currently houses its development code in a
CVS instance on the projects CVS server [41]. Additionally, the
project has already released some important subsets of code.

4.1.7.1 End User Interfaces
In April 2000, the Bluebird Project released the initial release of
their user interfaces. This was targeted as the first major
milestone to allow the community time to work with and
familiarize themselves with the histogram-based metaphor.

4.1.7.2 JSNMP Libraries
In June 2000, the project team announced the release of the first
commercially viable SNMPv1 and SNMPv2 libraries for Java.
Since its initial announcement, the jSNMP libraries have been
downloaded over 300 times and the team has been contacted by
multiple commercial organizations seeking LGPL licensing, to
allow for commercial use of the currently GPL product [42].

4.1.8 Project Status
The project team has fluctuated in size with different development
phases, but has been as large as 12. A permanent project manager
has been added to the team, who is currently responsible for
communications with the community of over 2000.
There are approximately 50 community members who are active
contributors in design, architecture, development, documentation,
or testing.

5. REFERENCES
[1] http://www.opensource.org/osd.html

[2] http://salaryadvisor.informationweek.com/cgi-
bin/ibi_cgi/ibiweb.exe?IBIF_ex=ind00&level=STAFF
&submit=Submit

[3] http://www.aprisma.com/ournews/1999/dec/12-15.html

[4] http://www.techweb.com/wire/story/TWB19980218S0
012

[5] http://www.nwfusion.com/newsletters/nsm/0920nm2.ht
ml

[6] http://www.ietf.org/rfc/rfc1441.txt

[7] http://www.net.cmu.edu/groups/netdev/software.html

[8] http://www.gaertner.de/snmp/

[9] http://www.net.cmu.edu/groups/netdev/agentx/

[10] http://www.scguild.com/agentx/

[11] http://ucd-snmp.ucdavis.edu/FAQ.html#What_is_it_

[12] http://ee-
staff.ethz.ch/~oetiker/webtools/mrtg/mrtg.html#HIST

[13] http://ee-
staff.ethz.ch/~oetiker/webtools/rrdtool/index.html

[14] http://www.usenix.org/events/neta99/full_papers/allen
/allen_html/index.html

[15] http://ee-
staff.ethz.ch/~oetiker/webtools/rrdtool/frontends/

[16] http://www.ops.com/prodinfo2/amerigo/amgo_cs/amg
o_cs.html

[17] http://wwwhome.cs.utwente.nl/~schoenw/scotty/

[18] http://www.ibr.cs.tu-bs.de/projects/scotty/

[19] http://www.marko.net/cheops

[20] http://www.bitwizard.nl/mtr/

[21] http://freshmeat.net/news/1999/06/09/928940947.htm
l

[22] http://cheops-ng.sourceforge.net/

[23] http://www.tcpdump.org

[24] http://www.snort.org/

[25] http://ethereal.zing.org

[26] http://cebu.mozcom.com/riker/iptraf/

[27] http://www.linuxave.net/~nunol/snmpsniff/

[28] http://pikt.uchicago.edu/pikt/index.html

[29] http://www.gsyc.inf.uc3m.es/~assman/gap/

[30] http://www.solucorp.qc.ca/linuxconf/concept.hc

[31] http://www.gxsnmp.org/

[32] http://www3.scram.de/gxsnmp/msg00864.html

[33] http://www.gsyc.inf.uc3m.es/~assman/em/

[34] http://www.kernel.org/software/mon/

[35] http://maclawran.ca/bb-dnld/

[36] http://bigsister.graeff.com/

[37] http://www.nwfusion.com/newsletters/nsm/1004nm2.
html

[38] http://www.opennms.org/goals.html

[39] http://xml.apache.org/

[40] http://alphaworks.ibm.com/aw.nsf/frame?ReadForm&
/aw.nsf/techmain/F62DB5F8684DCF6A8825671B006
82F34

[41] http://www.opennms.org/cache/9.html

[42] http://www.opensource.org/license

http://www.aprisma.com/ournews/1999/dec/12-15.html
http://www.ietf.org/rfc/rfc1441.txt
http://www.bitwizard.nl/mtr/
http://alphaworks.ibm.com/aw.nsf/frame?ReadForm&/aw.nsf/techmain/F62DB5F8684DCF6A8825671B00682F34
http://alphaworks.ibm.com/aw.nsf/frame?ReadForm&/aw.nsf/techmain/F62DB5F8684DCF6A8825671B00682F34
http://alphaworks.ibm.com/aw.nsf/frame?ReadForm&/aw.nsf/techmain/F62DB5F8684DCF6A8825671B00682F34

	ABSTRACT
	Keywords

	THE PROBLEM
	THE TOOLS
	SNMP Agents
	CMU SNMP
	UCD-SNMP

	Data Collection/Presentation Tools
	MRTG & RRDTool
	Cricket

	Network Mapping Tools
	Scotty/Tkined
	Cheops

	Network Protocol Analysis Tools
	tcpdump
	SNORT
	Ethereal
	iptraf
	SNMP Sniff

	Network and Systems Monitors
	GxSNMP
	The Event Monitor Project (Emonitor)
	Mon
	Big Sister

	Next-Generation Tools
	OpenNMS’ Bluebird Project
	User Interface
	Distributed Architecture
	Synthetic Transactions
	Graphical Administration Capability
	Underlying Technologies
	Risks Associated with Open Source
	Code Releases
	End User Interfaces
	JSNMP Libraries

	Project Status

	REFERENCES

