Low Energy Electron Diffraction - LEED

Presentation prepared by Professor Wolfgang Ranke Dep. Inorganic Chemistry Group Model Surface Analysis Fritz-Haber-Institut der MPG

Literature:

G. Ertl, J. Küppers, Low Energy Electrons and Surface Chemistry, VCH, Weinheim (1985).
M. Henzler, W. Göpel, Oberflächenphysik des Festkörpers, Teubner, Stuttgart (1991).
M.A. Van Hove, W.H. Weinberg, C.-M. Chan, Low-Energy Electron Diffraction, Experiment, Theory and Surface Structure Determination, Springer Series in Surface Sciences 6, G. Ertl, R. Gomer eds., Springer, Berlin (1986).
M. Horn-von Hoegen, Zeitschrift für Kristallographie 214 (1999) 1-75.
Low Energy Electron Diffraction - LEED

Si(111)-(7x7)

LEED is surface sensitive

Low energy electrons interact strongly with matter:

electron mean free path λ_e

is small.

Only e⁻ scattered from near surface can leave the surface,

surface sensitive

M.P. Seah, W.A. Dench, Surf. Interf. Anal. 1 (1979) 2

The observation of a LEED pattern does not guarantee that the whole surface is ordered!

Coherence of e^{-} -beam limited by ΔE and beam divergence. Coherence length = diameter of coherently scattering area.

> The coherence length of a standard LEED optics is only 10 – 20 nm!

1st approximation: Scattering from 2-D lattice.

Analogy to optical grating.

Constructive interference: Enhancement of intensity only in certain directions:

n λ = d sin ϕ

For 2D arrangement (plane lattice): scattering conditions have to be fulfilled in both directions

Note:

If the lattice constant(s) $a_1 (a_2) \underline{in}$ crease, the scattering angle for the beam h (k) <u>de</u>creases.

This is the reason for the reciprocity of the real and the s.c. reciprocal lattice.

Useful: Introduction of reciprocal lattice

Real lattice vectors Reciprocal lattice vectors

a₁,a₂ a₁*, a₂*

Definitions:

 $a_1^* = 1/(a_1 \sin \gamma)$ $a_2^* = 1/(a_2 \sin \gamma)$ γ angle between a_1 and a_1

 a_1^* perpendicular to a_2^* a_2^* perpendicular to a_1^*

Constructive interference for:

 $a_1 (s - s_0) = h \lambda$ $a_2 (s - s_0) = k \lambda$ (Laue conditions for 2 dimensions) Real 2D system: 3rd Laue condition always fulfilled.

It follows for the direction of beams:

 $\frac{1}{\lambda} (\mathbf{s} - \mathbf{s_0}) = \frac{1}{\lambda} \Delta \mathbf{s} = h \mathbf{a_1}^* + k \mathbf{a_2}^* = \mathbf{g}$ $\mathbf{g} = \text{reciprocal lattice vector}$

Ertl/Küppers fig. 9.11, p 216

Ewald sphere construction

- plot reciprocal lattice (rods)
- plot direction of incident beam (s₀) towards (00) spot
- go $1/\lambda$ along this direction
- make circle (sphere) with radius $1/\lambda$
- direction from circle (sphere) center towards cut with reciprocal lattice rods gives direction of all possible diffraction spots (hk)

Usual arrangement: Normal incidence, symmetrical diffraction pattern

Expected diffraction pattern for (001) surface, e.g. Pt(001) (unreconstructed), E_0 =313 eV

Surface diffraction with X-rays, He-atoms and electrons. Example: diamond-type (111) surface like C, Si, Ge. The darkness of rec. latt. spots and rods symbolizes diffraction intensity

Horn-von Hoegen, fig. 2.1

LEED:

2. Simple

Kinematic theory (single scattering) Size, shape and symmetry of surface unit cell, Superstructures Domains **only** if long-range ordered

No information about atomic arrangement within the unit cell

3. Less simple

Kinematic theory Deviations from long-range order: Spot width \rightarrow domain size Background intensity \rightarrow point defect concentration Spot splitting \rightarrow atomic steps

4. Difficult

Dynamic theory (multiple scattering) Spot intensities $I(E_0)$ or I-V curces \rightarrow structure within unit cell

2. LEED – simple

Superstructures result from:

Reconstruction = rearrangement of surface atoms on clean surfaces Ordered adsorption

Structure examples

Three possible arrangements yielding c(2x2) structures. Note: different symmetry!

Ertl/Küppers fig. 9.6, p.208

coincidence latt. commensurate

incoherent, incommensurate

Ertl/Küppers fig. 9.3, p.205

a) not distinguishable

Ertl/Küppers fig. 9.19, p.224

Real and reciprocal space lattices

Van Hove et al. fig. 3.5, p.55

REAL SPACE LATTICE	RECIPROC	E
• • • • • • • • • • • • • • • • • •		$\begin{cases} fcc (100) - {\begin{pmatrix} 10\\01 \end{pmatrix}} \\ fcc (100) - (1\times1) \end{cases}$
	.	$\begin{cases} tcc (100) - \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \\ tcc (100) - \{2 \times 1\} \end{cases}$
	• • • • • • • • • • • • •	
	0 * 0 * 0 • • * • • 0 * 0 * 0 • * * • •	$\begin{cases} fcc (100) - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \\ fcc (100) - (2 \times 2) \end{cases}$
	\diamond :	$\begin{cases} tcc (100) - \begin{pmatrix} 1 \\ -1 \end{pmatrix} \\ fcc (100) - (\sqrt{2} \times \sqrt{2}) R45^{\circ} \\ fcc (100) - c(2 \times 2) \end{cases}$
		{tcc (110)-{10 01 tcc (110)-(1×1)
	•••••••	$\begin{cases} fcc (110) - \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \\ fcc (110) - (2 \times 1) \end{cases}$
		$\begin{cases} fcc (110) - \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \\ fcc (110) - (1 \times 2) \end{cases}$
\$	\diamond :	$ \begin{cases} fcc (111) - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ fcc (111) - (1 \times 1) \end{cases} $
•••••		{fcc (111)-(1 1) {fcc (111)-(2 -t) fcc (111)-(3×√3)R30°
	`	$\begin{cases} fcc (111) - \begin{pmatrix} 20\\ 02 \end{pmatrix} \\ fcc (111) - (2 \times 2) \end{cases}$
		$\begin{cases} fcc (111) - \begin{pmatrix} 10 \\ 02 \end{pmatrix} \\ fcc (111) - (1\times 2) \end{cases}$

Superstructures, example 1

GaAs(001) clean, different preparations

As(31)/Ga(55) Auger peak height ratios: c(8x2) 1.74

1.74
1.77
1.92
2.12
2.25
2.7

Information from patterns:

- symmetry of unit cell
- size and shape of surface unit cell
- sharpness of spots \rightarrow domain size
- background intensity
 → concentration of point defects

Superstructures, example 2 Si(001) clean

no 2x2 structure! central spots missing → two-domain 2x1

Wasserfall, Ranke, 1994

(b)

(d)

Figure 3. Buckled dimer reconstructions on the (001) surface of germanium: (a) $b(2 \times 1)$; (b) $c(4 \times 2)$; (c) $p(4 \times 1)$; (d) $p(2 \times 2)$.

Payne et al. J. Phys.: Cond. Matter 1 (1989) SB63

3. LEED – less simple

Information from spot shape (profile), background, E_0 -dependence (k_{\perp} -dependence)

	Nachweis vo	n Oberfläc	hendefekten	mit Beug	ung
Dimen - sion	Beispiele An	Einfluß auf Reflexprofil			
0	Punktfehler thermische Bewegung statische Unordnung	Anordnung: statistisch korreliert	<u> </u>		K <u>r</u> Abhängigkeit keine
1	Stufenkanten Domänen (Größe, Grenzen)	statistisch regelmäßig	oder oder	<u> </u>	periodisch (Stufen) keine (Domänen)
2	Überstruktur Facetten			<u>л</u>	keine periodisch
3	Volumendefekte (Mosaik, Verspannung)	ž sta	IN	Л	monoton
id	eale Oberflächen		1_1	A	keine

Henzler, Göpel Abb. 3.8.10, p.176

Facets and mosaic

Henzler, Göpel
Abb. 3.8.4, p.167

b)

Van Hove et al., fig. 3.6, p.58

Henzler, Göpel, fig. 3.8.3, p.165

Example: Si(001)vic

Si(001) **†** [-110]

Si(001)vic, 5°→[110]

Wasserfall, Ranke, 1994

4. LEED – difficult

Spot intensities contain information on structure within the unit cell

 $I \sim |F|^2 \cdot |G|^2$

 $|G|^2$ = structure factor or lattice factor

contains shape and arrangement of repeat units (unit cells) yields reciprocal lattice determines location and shape of spots, kinematic theory

 $|F|^2$ = structure factor or form factor

contains contribution from all atoms within the repeat unit, includes multiple scattering, in-depth attenuation, dynamic theory

Multiple scattering

Henzler/Göpel fig. 3.7.3, p.151

Dynamic LEED analysis: No direct deduction of structure from I-V-curves:

Guess structure model calculate I-V-curves compare with measured curves modify model check if improval if yes: proceed modifying in this direction if no: modify in another direction or guess new model

Disadvantage: Only for ordered structures Much computer time

But:

One of very few methods for structure analysis of first few atomic layers (~1 nm)

Fe{oct2}

FeO/Pt(111), satellite pattern: multiple scattering, kinematic

0.9 ML FeO(111) on Pt(111), "structure 1"

5. LEED in model catalysis - example

Distinguish different Fe-O-phases

as measured

contrast enhanced

FeO(111)/Pt(111), 1 ML

Fe₃O₄(111)

 $\alpha\text{-}\mathsf{Fe}_2\mathsf{O}_3(0001)$

Change of order and phase during reaction

Starting surface: α -Fe₂O₃(0001) (hematite), defective

After reaction

- no long-range order
- strong C peak in AES

After mild TPO (thermal programmed oxidation)

- reordered
- no longer hematite
 but Fe₃O₄(111)
 (magnetite

Osama Shekhah

Modern Methods in Heterogeneous Catalysis Research: Theory and Experiment

6. Conclusions

For qualitative information on surface structure very simple (display LEED) •Order

- •Periodicity
- •Symmetry

For quantitative information on deviations from ideal order (SPA-LEED)

- •Domain size
- •Antiphase domains
- •atomic steps

For quantitative analysis of surface structure (dynamic I-V-curve analysis)

- •Precise atomic arrangements
- Relaxations
- Reconstructions