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1 Introduction

Much as mass(material) is transported within fluids (gases and liquids),
linear momentum is also associated with transport, in this case, due to
gradients in velocity.

See Figure 35.11 for a descriptive picture of a fluid flowing between 2
fixed plates (or within a tube, as one would expect process materials to flow
in a manufacturing plant, or the plumbing in your house, blood flowing in
arteries and veins, etc).

Though this is discussed in the context of gases, such simple relations can
hold in the liquid as well, and these connections have been borne out by
experiments connected with specific solutions of the Navier-Stokes solutions.

• There is a gradient in velocity orthogonal to the direction of flow (for
flow in x-direction, gradient along z-direction)

• We have gradient in linear momentum orthogonal to flow

Following the derivation of diffusion from our previous discussion, the flux
of x-direction linear momentum is given by:

Jnet flux = −1
3

〈ν〉 Ñλm

(
dvx

dz

)
z=0

Jnet flux = −η

(
dvx

dz

)
z=0
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η is the coefficient of viscosity, or viscosity. Represents a conductance of
linear momentum in a fluid.

By multiplying both sides of the flux relation, we obtain the viscous drag
force:

Fdrag = ηA

(
dvx

dz

)
z=0

(1)

In this sense, the viscosity is a measure of a fluid’s resistance to flow gradi-
ents (velocity gradients).
Units of viscosity: poise = 10−1kgm−1sec−1
Gases: micropoise (µP )
Liquids: centipoise (cP)

Some common fluids and their viscosities are:

Another important implication of fluid viscosity is the synovial fluid that
lines the cartilage of knee joints and helps to lubricate the joint surfaces for
painless motion. The synovial fluid is highly viscous (relatively speaking)
and this viscosity is reduced with age and trauma. Thus, viscosity is at play
in our own bodies.
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2 Temperature Dependence of Viscosity

Substituting the necessary relations into the kinetic theory definition of
viscosity, we obtain:

η =

√
mkT

π3σ4L

η ∝ T
1
2

• Gases: Kinetic theory predicts little pressure dependence of viscosity

• Gases: Kinetic theory qualitatively matches experiment

• Gases: mechanism of momentum transfer is through collisions (kinetic
theory); higher temperature allows greater collisions; thus greater vis-
cous drag (fluid lamella exert force on one another)

• Liquids: Kinetic theory does not predict decrease of liquid viscosity
with temperature; Kinetic theory neglects attractive interac-
tions/forces in liquids.

• Corrections have been made to (Sutherland Equation, i.e., to account
for interactions betweenparticles. Statistical mechanical treatments
for viscosity, etc...; these are beyond the scope of this course)

3 Liquids: Diffusion and Viscosity

• What is the effect of a fluid’s viscosity on the dynamics of a particle
(much larger than the size of the molecules of the fluid?
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• What is the relation between the fluid viscosity and particle diffusion
coefficient?

Consider a large, spherical particle in a fluid of viscosity η. The total x-
direction force acting on this particle is:

Ftotal, = Fx,random(t) + Fx,friction (2)
(3)

The friction force is given by:

Fx,friction = −fvx = −f

(
dx

dt

)
(4)

f is the frictional coefficient discussed below (5)

The friction force for a spherical particle (larger than the molecules of the
solvent) moving in a fluid of viscosity η at low Reynolds numbers (no tur-
bulence) had been determined by George Gabriel Stokes in 1851 as a limit-
ing solution to the more general Navier-Stokes equations, themselves
derived from considerations of mass, momentum, and energy con-
servation, and generalized continuity equations:

ρ
Dv
Dt

= −∆p + ∆ ·T + f (6)

The friction force is determined to be (with the frictional coefficient as
f = 6πηR) :

Fx,friction = −6πηRvx R = sphere radius (7)

The particle diffusion constant is then determined to be:
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D =
kT

6πηR
Stokes − Einstein Equation (8)

• The diffusion constant depends on the first power of Temperature

• The diffusion constant varies inversely with particle size and fluid vis-
cosity (as intuitively expected)

• For particle size and fluid molecule size of similar dimensions:

D =
kT

4πηR
(9)

4 Sedimentation and Centrifugation

From the discussion of the last section, we can apply some concepts to
practical separations. For the present, we consider sedimentation and
centrifugation.

• Sedimentation: can be used to approach diffusion constants, molecular
weights, viscosities of (macro)molecules

• Consider Figure 35.17 in Engel and Reid

• Friction Force: Ffriction = −fvx

• Gravitational Force: Fgravity = mg

• Buoyant Force: Fbuoyant = −mV̄ ρg

• V̄ = specific volume of solute

• Specific volume = change in solution volume per mass of solute (cm3gr−1)

• Sedimentation velocity = terminal velocity = velocity for acceleration=0
(velocity= constant)

a =
F
m

= 0 = Ffriction + Fgravity + Fbuoyant (10)

0 = −fvx,terminal + mg − mV̄ ρg (11)

vx,terminal =
mg(1 − V̄ ρ)

f
(12)

(13)
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• Recall f from Stokes’ law

f = 6πηR

• Sedimentation Coefficient

s̄ =
vx,terminal

g
=

m(1 − V̄ ρ)
f

(14)

f = 6πηR (15)

• Units of time (seconds); referred to Svedberg (s)

• particle mass, viscosity, density, size

If we consider that the terminal velocity is dependent on acceleration forces,
such as g, we are limited (all things being equal) unless we can generate larger
forces (really, larger accelerations, larger than the gravitational acceleration,
g = 9.8 m

sec2
. In terms of separations, it would be ideal to have a large

terminal velocity in order to speed up the separation. How do we generate
larger forces (centripetal accelerations)? Centrifugation.

we can replace the gravitational acceleration by angular (centripetal )
acceleration to arrive at the sedimentation coefficient as follows (recall from
basic mechanics that the normal, or centripetal, acceleration for uniform
circular motion is acentripetal = ω2 r, where r helps to define the local
curvature of the motion and ω is the angular velocity):
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s̄ =
vterminal

ω2x
=

m(1 − V̄ ρ)
f

(16)

s̄ =
(dx(t)

dt

ω2x(t)
=

m(1 − V̄ ρ)
f

(17)

ω2s̄ =

(
dx(t)

dt

)
x(t)

(18)

ω2s̄dt =
dx(t)
x(t)

(19)

ω2s̄t = ln

(
x(t)
xo

)
(20)

In order to determine s̄, plot ln(x(t)/xo) versus time; slope is ω2s̄.

7


