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I. 1-Dimensional Classical Harmonic Oscillator

The classical picture for motion under a harmonic potential (mass attached
to spring attached to surface; two massess connected by spring) is deter-
mined by solutions to Newton’s equations of motion:

F = ma = m
d2x

dx2
= −

dV (x)

dx
= −kx

where k is a force constant for the spring connecting the masses, and V (x) =
1
2kx

2 is the harmonic potential (Hooke’s Law),and vector notation has been
dropped for this one-dimensional case. General solutions to this equation
are of the form:

x = xM cos(ωt− φ)

The behavior of the amplitude, or deviation from equilibrium separation,
is sinusoidally varying with amplitude xM and angular frequency ω. ω is

related to the mass and force constant through the relation ω =
√

k
m .

The kinetic energy of the mass is T = 1
2m

(

dx
dt

)2
= p2

2m with p = mdx
dt being

the particle momentum.

The total energy is then (recalling that k = mω2 ):

E = T + V (x) =
p2

2m
+

1

2
kx2 =

p2

2m
+

1

2
mω2x2
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Substituting the general solution equation discussed above, we see that the
total energy is independent of time (as required for conservative sys-

tems):

E =
1

2
mω2x2

M

Thus, the energy is non-zero, continuous, and constant. The maximum dis-

placement is related to the energy as xM =
√

2E
mω2 .

Aside: Though we will not consider the following in terms of reduced mass
for an oscillator (or rigid rotor when considering angular momentum), we
present here the reduced mass for reference.

Reduced mass is the effective inertial mass appearing in the two-body
problem of Newtonian mechanics. This is a quantity with the units of mass,
which allows the two-body problem to be solved as if it were a one-body
problem. Note however that the mass determining the gravitational force is
not reduced. In the computation one mass can be replaced by the reduced
mass, if this is compensated by replacing the other mass by the sum of both
masses.

Given two bodies, one with mass m1, and the other with mass m2,
they will orbit the barycenter of the two bodies. The equivalent one-body
problem, with the position of one body with respect to the other as the
unknown, is that of a single body of mass

mred = µ =
1

1
m1

+ 1
m2

=
m1m2

m1 +m2

where the force on this mass is given by the gravitational force between the
two bodies. This can be proven easily. Use Newton’s second law, the force
exerted by body 2 on body 1 is

F12 = m1a1

The force exerted by body 1 on body 2 is

F21 = m2a2
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According to Newton’s third law, for every action there is an equal and
opposite reaction:

F12 = −F21

Therefore,

m1a1 = −m2a2

and

a2 = −

m1

m2
a1

The relative acceleration between the two bodies is given by

a = a1 − a2 = (1 +
m1

m2
)a1 = (

m2 +m1

m1m2
)m1a1 = F12/mred

So we conclude that body 1 moves with respect to the position of body 2 as
a body of mass equal to the reduced mass.

The reduced mass is frequently denoted by the Greek letter µ .
II. 1-Dimensional Quantum Harmonic Oscillator

With respect to describing the dynamics of atoms and molecules, the particle-
in-a-box wavefunctions help us describe the quantum mechanical analogue
of particle translational motion. Molecules can also have vibrational and
rotational dynamics, both of which can be formulated and determined in a
quantum mechanical framework.
Keep in mind: quantization will arise from boundary conditions when
solving Schrodinger’s Equation, as was discussed in the case of the particle-
in-a-box.

Ia. Schrodinger Equation Solution for Harmonic Potential

We have seen from the particle in a box problem that the potential, V (x),
helps to define the nature of solutions to the time-independent Schrodinger
equation. For a system characterized by the relative motion of two masses
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connected by a spring of force constant k, with small displacements from
equilibrium, the potential can be taken as a harmonic (Hookean) form:

V (x) =
1

2
kx2

This problem can be cast equivalently in terms of the motion of a relative
mass defined as m1m2

m1+m2
(as done in Engel and Reid); here we will work with

the absolute mass of a particle. To write the Schrodinger equation for the
quantum harmonic oscillator, we consider the energy for the classical total

energy for a harmonic oscillator derived above using the general solu-
tion.

In the classical sense:

Etotal = T + V (x) =
p2

2m
+

1

2
kx2

With

k = m ω2

Etotal = T + V (x) =
p2

2m
+

1

2
m ω2 x2

We have seen that the quantum mechanical operators for the momentum
and position are (Table 14.1 Engel and Reid) x = x̂ and p = P̂ = −i h̄ d

dx .
Thus, the quantum analogue for the total energy is the Hamiltonian op-
erator, which uses the momentum and position operators to represent the
kinetic and potential energies of the quantum system as:

Ĥ =
1

2m
P̂ 2 +

1

2
mω2x̂2

The Hamiltonian, as in the classical case, is independent of time, and so we
can solve the eigenvalue equation for the stationary states:

Ĥψ(x) = Eψ(x)

−h̄2

2m

∂2ψ(x)

∂x2
+

1

2
mω2x2ψ(x) = Eψ(x)
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If we define several alternate variables, the expression can be cast in a di-
mensionless form. This is important as we will see in a moment.

y =
x

α
α =

(

h̄2

mk

)1/4

ε =
2

h̄ω
E

d2ψ(x)

dy2
− y2ψ(x) +Eψ(x) = 0

This is Hermite’s associated differential equation. The solutions of this equa-
tion have been determined using a variety of methods (see Cohen-Tannoudji,
Diu, and Laloe. Quantum Mechanics, Volume 1., Chap 5 and complements).

The eigenvalues of this Hamiltonian are:

En =

(

n +
1

2

)

h̄ω n = 1,2,3, ...∞

Thus, for the q.m. harmonic oscillator, the energy is quantized and
cannot take on arbitray values as in the classical case. Again, the ground
state energy (as in the particle-in-a-box case) is non-zero, and equal to h̄ω

2 .

IIb. Harmonic Oscillator Wavefunctions

The associated wavefunctions for the Hamiltonian are products of Gaussians
and Hermite Polynomials. The Gaussian is the standard exponential in x2

while the Hermite polynomials are a recursive set of functions possesing a
special type of symmetry. The Hermite polynomials possess either even or
odd symmetry depending on the quantum number associated with them.
For a full discussion of the derivation of these wavefunctions, see Cohen-
Tannoudji et al.

The Hermite polynomials are an orthogonal set of functions. This is consis-
tent since they are eigenfunctions of the total energy operator (Hamiltonian)
for the harmonic oscillator. They arise as a result of assuming a polyno-

mial form for solutions to the Hermite differential equation. Thus,
each polynomial of degree n becomes a solution (and an eigenfunction) for
the Hamiltonian.
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Wavefunctions

ψ(x) = AnHn

(

x

α

)

e−
x
2

2α
2 n = 0, 1, 2, 3, ....,∞

Table of the First Few Hermite Polymials

Quantum Number, n Hn(y) Symmetry

0 1 Even

1 2y Odd

2 4y2
− 2 Even

3 8y3
− 12y Odd

Note

1. 1-D harmonic oscillator has equally spaced energy levels
2. Constant Energy spacing defined by fundamental frequency, ω. Contrast
to P-I-B energy level spacing at high quantum numbers
3. Energy levels are non-degenerate: only 1 state per energy level
4. Wavefunctions are orthogonal set of polynomial functions known as Her-
mite Polynomials
5. Symmetry of wavefunctions alternates between even and odd based on
quantum number
6. Finite probability of finding the quantum oscillator in classically forbid-
den regions (outside of classical turning points;tunneling)

7. Probability of finding a Particle in the Harmonic Oscillator Potential
Classical

particle is most likely to be found near the edges. particle is moving
more quickly in the middle of the potential we’d expect the particle to
spend less time in the middle because it is moving rapidly and more time at
the edges were it is moving more slowly. the chance of finding the particle
at a particular location is related to the amount of time spent there Thus,
we have a better chance of finding the particle at the edges and less in the
middle.

Quantum Mechanics
for the ground state of the system, the wave function has its maximum

value in the middle of the potential, which means that the probability of
finding the particle is highest in the center. as we look at higher energy
states (increase n), the probability of finding the particle in the center de-
creases and the probability of finding the particle at the edges increases.
this is consistent with the correspondence principle that says in the limit of
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large n, the quantum approach should agree with the classical approach.

The following figures show characteristic wavefunctions; probabilities can be
found in Engel and Reid (Figure ).

Representative Wavefunctions

n=0 n=1

n=5 n=20

Symmetry Properties of Wavefunctions

Ψ0,2,4,6,... are even functions. Ψ(−x) = Ψ(x).

Ψ1,3,5,7,... are odd functions. Ψ(−x) = −Ψ(x).

Useful properties:
(even)(even) = even

(odd)(odd) = even
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(odd)(even) = odd

d(odd)

dx
= (even)

d(even)

dx
= odd

∫

∞

−∞

(odd)dx = 0

∫

∞

−∞

(even)dx = 2

∫

∞

0
(even)dx

More detailed discussion of Hermite polynomial wavefunctions:

Optional

Hermite Polynomials

A polynomial is a finite sum of terms like akxk, where k is a positive
integer or zero. There are sets of polynomials such that the product of any
two different ones, multiplied by a function w(x) called a weight function
and integrated over a certain interval, vanishes. Such a set is called a set of
orthogonal polynomials. Among other things, this makes it possible to ex-
pand an arbitrary function f(x) as a sum of the polynomials, each multiplied
by a coefficient c(k), which is easily and uniquely determined by integration.
A Fourier series is similar, but the orthogonal functions are not polynomi-
als. These functions can also be used to specify basis states in quantum
mechanics, which must be orthogonal.

The Hermite polynomials Hn(x) are orthogonal on the interval from
−∞ to +∞ with respect to the weight function w(x) = ex2

. Surprisingly,
this is sufficient to determine the polynomials up to a multiplicative factor.
Let’s start with the expression Hn = ex

2

(dn/dxn)e−x2). We notice that each
differentiation will bring down a factor −2x, and that the exponential will
survive in each term. Each term will contain the factor exp(−x2) that will
be cancelled by the exponential in front. Therefore, the result will be a
polynomial of degree n, and the leading term will be (−2x)n. The powers
of x will either be all even or all odd, as well. Moreover, the form of this
definition will guarantee that the polynomials belonging to different values
of n are orthogonal.

An alternative definition uses the weight function w(x) = ex2/2 instead.
Then,Hen = ex

2/2(dn/dxn)e−x2/2, where the notation He is used instead of
H to make the different weight function clear. Of course, the corresponding
polynomials will be very similar, and one could be used as well as the other,
with appropriate changes of variable. In this case, each differentiation brings
down the simpler factor(−x), so that the coefficient ofxn is (−1)n. In fact,
the usual definitions include the (−1)n factor, so that the coefficient ofxn is
always positive. Of three classic references (see References), Jackson uses
He, Pauling and Wilson H, and both are given in Abramowitz and Stegun.
The possibilities of confusion are not as great as in the case of Laguerre
polynomials.
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