1 Problem 1

The rotational constant, B_{e}, for IBr determined from microwave spectroscopy is $0.2241619 \mathrm{~cm}^{-1}$. Approximate the bond length of this molecule.

1.1 Solution

From the Handbook:

$$
B_{e}=\frac{h}{8 \pi^{2} \mu R_{e}^{2}}
$$

Rearranging gives the required form for solving for the equilibrium bond length of the molecule:

$$
R_{e}=\sqrt{\frac{h}{8 \pi^{2} \mu B_{e}}}
$$

2 Problem 2

How would you compute the energy change associated with a rotationvibration transition of a diatomic molecule from $n=0$ to $n=1$, and $J=1$ to $\mathrm{J}=2$, using as many corrections to the rotational and vibrational energetics of the molecule. Provide the solution in terms of wavenumbers. Recall that $\omega_{e}=2 \pi \nu$, where ν is in the units of $\sec ^{-1}$.

2.1 Solution

The energy for a given vibrational state, n, and rotational state, J, is given by (considering the higher corrections for anharmonicity, centrifugal distortion, and vibration-rotation coupling:
$E=-D_{e}+\left(n+\frac{1}{2}\right) \hbar \omega_{e}-\left(n+\frac{1}{2}\right) \hbar x_{e} \omega_{e}+h B_{n} J(J+1)-h D_{c} J^{2}(J+1)^{2}$
Compute the above expression for the two states given. This gives the energy in convenional units. To convert to wavenumbers, we divide by $h c$, where c is the speed of light.

