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I. Diatomic Molecules: Hydrogen

We now consider diatomic molecules, and the wavefunctions, energies, and
spectroscopies associated with such systems. Naturally, we will build upon
the approaches we have adopted in the past, as well as introduce new ideas
to allow us to solve more complicated problems. The hydrogen molecule H2

(or dihydrogen) contains 2 nuclei and 2 electrons. In order to discuss prop-
erties of molecules (dipole moment, polarizability, geometry, spectroscopic
transitions related to bond stretching, rotations, etc.) we need to have wave-
functions and energetic states for molecules, i.e, molecule wavefunctions and
energies. Thus, we must solve a Schrodinger wave equation for the molec-
ular system. Some things to consider are the interactions involved in the
Hamiltonian of such a system:

• Nuclear translation (kinetic energy)

• Electronic translation (kinetic energy)

• Nuclear-Nuclear repulsion

• Nuclear-electron attaction

• electron-electron repulsion

• spin-orbit coupling

The Hamiltonian is thus:

Ĥ = K̂EN + K̂Ee + V̂NN + V̂Ne + V̂ee + V̂so

Bear in mind the repulsions and attractions will contribute positvely and
negativley to the energy of the system. As in the Hydrogen atom case, we
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can decompose this problem into a center of mass and relative motion prob-
lem.

• masselectron =
massproton

1836 . Electrons treated as ”massless”

• Center of mass of system thus defined by nuclear masses and their
positions

• Center of mass problem is a quantum mechanical particle-in-a-box
problem (not very interesting)

• Hamiltonian terms for center-of-mass problem: Ĥ = − h̄2

2µ
∇2

n− h̄2

2M
∇2

COM

• M = massnucles 1 +massnucleus 2 and µ is the reduced mass,

µ = (massnucleus 1)(massnucleus 2)
M

The relative motion problem

Separating out the center-of-mass motion leaves the problem of dealing with
the relative motion of nuclei and electrons:

• Nuclear and electronic motion still relative to center of mass of system

• Cannot straightforwardly separate nuclear and electronic motions as
done for hydrogen atom case: without simplifications/qualifications,
Hamiltonian is not strictly separable into nuclear and electronic com-
ponents.

• Coulomb interactions between nuclei and electrons ”couple” the two
systems and do not possess inherent symmetry (i.e. spherical sym-
metry with central force potenail for hydrogen atom nucleus-electron
interaction)

The way out of this dilemma is the Born-Oppenheimer Approximation.
:

• Nuclei are 103 times heavier than electrons. Electronic dynamics,
being much faster, allows electrons to rapidly ”equilibrate” to more
slowly-varying nuclear geometries. Thus, consider nuclei fixed and de-
termine electronic wavefunctions for a given nuclear geometry/configuration

• Ψ ∼= Ψe(R, re)Ψn(rn, θn, φn)

• Electronic wavefunctions effectively become ”functions” of nuclear sep-
aration. For the nuclei, the electronic wavefunctions determine a po-
tential, E(R)
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• Repeatedly determining electronic wavefunctions and energies for mul-
tiple nuclear configurations yields apparent internuclear potential, E(R).

Solution of Relative Nuclear Motion

Within the BO approximation, then, one obtains a Hamiltonian for the nu-
clei that includes the internuclear potential as discussed above:

ĤN(R)ΨN (R) =
[

K̂EN +E(R)
]

ΨN (R) = EΨN (R)

Since it is evident in the case of the H2 diatomic that we can consider the
system analogous to a rotor, the explicit Hamiltonian will contain radial and
spherical polar components (spherical polar coordinates were shown to be
convenient reference for such calculations):

ĤNΨN =

[

− h̄
2

2µ

1

R2

∂

∂R

(

R2 ∂

∂R

)

+
1

2µR2
L̂2 +E(R)

]

ΨN = EΨN

• Wavefuntion is factorable into Radial and spherical harmonic functions
as in hydrogen atom case

• ΨN = ζ(R)Ylm(θN , φN )

• solving for R requires we know E(R) explicitly

– Harmonic Approximation Near Equilibrium Nuclear Sepa-
ration

– Taylor expand about equilibrium distance. Truncate at first term,
giving Harmonic (quadratic) form.

– E(R) = E(Re)+
1
2!

(

∂2E
∂R2

)

Re

(R−Re)
2+ 1

3!

(

∂3E
∂R3

)

e
(R−Re)

3+· · ·

– Essentially a harmonic oscillator treatment of motion of nuclei.

– Corrections can be added via perturbative treatments

The energies of the diatomic molecule one obtains thus mimic the vibra-
tional and rotational counterparts for the hydrogen atom.

• Vibrational energy: associated with quantum number n = 0, 1, 2, 3, ....

• Energy: Evib =
(

n+ 1
2

)

hνo −
(

n+ 1
2

)2
Rehνo + · · ·
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• The second term is a correction for the anharmonic contributions ne-
glected in the above formulation using only the harmonic (quadratic)
terms in E(R)

• Rotational Energies: treating the diatomic as a rigid rotor, the energy
depends on the total angular momentum, J (recall for the hydrogen
atom the energy for the rigid rotor was h̄l(l + 1).

• Diatomic rotational energy: Erot = BehJ(J + 1)

• Rotational Constant: Be = h̄
4πµR2

e

• Coupling between rotation and vibration modulates Be:

Bn: Bn = Be − α
(

n+ 1
2

)

• Real molecules are not rigid rotors; distortion due to centrifugal effects:

−DcJ
2(J + 1)2

• Total rotational energy: Erot = BnJ(J + 1) −DcJ
2(J + 1)2

The total energy for a diatomic such as H2 thus becomes (in the BO approxi-
mation with harmonic oscillator / rigid rotor treatment corrected for higher
order effects):. The energy includes contributions from vibration-rotation

coupling and centrifugal distortion.

En,J =

(

n+
1

2

)

hνo −
(

n+
1

2

)2

Rehνo + · · ·

+

(

Be + αe

(

n+
1

2

))

J(J + 1) −DcJ
2(J + 1)2

Spectroscopy of Diatomic Molecule

• Diatomics possess rotational - vibrational spectra (dynamical models
included in the description)

• Selection Rules

– ∆J = ±1

– ∆n = ±1

• Infrared (vibrational stretching) frequencies
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Summary

• H2 problem can be formlated as harmonic oscillator / rigid rotor prob-
lem within the Born-Oppenheimer Approximation

• Perturbative corrections for coupling and higher-order dynamical ef-
fects (vibrational anharmonicity, centrifugal distortion)

• Energy depends on vibrational and rotational quantum numbers

• Have not specifically determined electronic wavefunction and states
for this problem.

– Explicit knowledge of electronic states important for describing
reactivity (bond making and breaking), chemical bonding

Molecular Spectroscopy

Vibrational - Rotational

I. By applying the criterion of a non-vanishing transition dipole within the
dipole approximation, the selection rules for vibrational and rotational spec-
troscopies for molecules can be determined. Here we state the results and a
brief discussion.

• Vibration

– Vibrational energy levels: Evib =
(

n+ 1
2

)

hνo−
(

n+ 1
2

)2
Rehνo+

· · ·
– Wavefunctions are Hermite polynomials

– Transition dipole criterion gives: ∆n = ±1 for vibrational transi-

tions. This is in the infrared region of EM spectrum.

– Vibrational modes can be symmetric or antisymmetric (CO2 stretch-
ing modes)

• Rotation

– Recall energy levels for rotational energy levels for diatomic (rigid
rotor including distortion effects)

–
(

Be + αe

(

n+ 1
2

))

J(J + 1) −DcJ
2(J + 1)2

– Selection Rule: ∆J = ±1

– ∆E = E(Jfinal) −E(Jinitial)

– For ∆J = +1, ∆E = 2hcB(J + 1)
( R-branch, high frequencies in infrared spectrum)
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– For ∆J = −1, ∆E = −2hcBJ
( P-branch, low frequencies, in infrared spectrum)

– For ∆J = 0 is a forbidden transition for infrared; ∆J = 0,±2 for
Raman spectroscopy (scattering phenomenon)

– Note that the energy differences for the two changes are not nec-
essarily the same

• Information from vibrational-rotational spectroscopy: normal mode
frequencies, normal modes, geometries

Molecular Orbitals

Having discussed qualitatively the nature of the energy states of a diatomic,
we now discuss the wavefunctions associated with molecular states. Elec-
tronic wavefunctions for molecules are known as molecular wavefunctions.
Just as the many-electron atomic wavefunction is built from 1-electron
atomic orbitals, molecular wavefunctions are built from molecular orbitals.

• Molecular Orbitals approximated as

• Linear Combination of Atomic Orbitals (LCAO-MO)

• SCF Hartree-Fock orbitals

• Valence-bond orbitals

• Huckel orbitals (conjugated systems)

Recall that when given the total wavefunction of a system (i.e, linear su-
perposition of eigenstates), the energy can be determined as an expectation
value:

E =

∫

Ψ∗

molecularĤΨmoleculard
3r

Applying this relation in a variational sense allows us to arrive at important
results for energies and associated wavefunctions.

We first consider the H+
2 system. At infinite separation, we can imagine

that the single electron is localized at one of the nuclei. As we bring the two
nuclei closer together, it is plausible to consider the location of the electron
(if we can speak in such deterministic terms) as being delocalized between
the two nuclei. Thus, the molecular wavefunction can be written as a lin-
ear combination of molecular orbitals which are themselves combinations of
atomic orbitals situated on individual nuclei.
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• LCAO-MO formulation of wavefunction.

• Linear combination of 1s orbitals centered on each nuclei, A and B

– ΨMO,± = 1√
2(1±SAB)

(φ1s,A ± φ1sB)

– In this case, the molecular wavefunction is equivalent to the
molecular orbital since each molecular orbital holds 2 electrons

• The energy associated with the molecular wavefunction (orbital):
EMO,± = 1

1±SAB
(HAA ±HAB)

• The H and S are shorthand notations for the various integrals that
arise from the calculation of the expectation value of the energy

– Hij =
∫

φ∗i (τ)Ĥφj(τ)dτ

– Overlap integral: Sij =
∫

φ∗i (τ)φjdτ

– Note that for the overlap integral, the orbitals in the integrand are
associated with different nuclei, and so the integral represent the
amount of overlap of the orbitals. For the same type of orbital,
this would be unity if the two orbitals were situated on the same
nucleus.

Energetics of the H+
2 system:

– There are two energy states associated with the wavefunctions
defined above; moreover, they are associated with molecular or-
bitals.

– One is a bonding state, or bonding orbital, and the other an
anti-bonding state or anti-bonding orbital.

– Relative to a hypothetical non-bonded state (where the hydrogen
atom and proton are ∞ separated), the bonded state has an en-
ergy minimum at the equilibrium bond distance, Re.

s

Note on molecular orbital symmetry:

– Molecular orbitals possess inherent symmetry properties. Con-
sider the molecular wavefunction (orbital) for H+

2 we are dis-
cussing.

– Symmetry is related to operators

– Symmetry under inversion: ÎΨ(x, y, z) = Ψ(−x,−y,−z) = ±Ψ(x, y, z)
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– Symmetry under reflection through a plane (x-y plane):
σ̂Ψ(x, y, z) = Ψ(x, y,−z) = mΨ(x, y, z)

– Symmetry under rotation by an angle θ

∗ R̂z,θΨ(x, y, z) = Ψ(x cosθ + ysinθ, ycosθ − xsinθ,−z)
= ±Ψ(x, y, z)

Considering the molecular wavefunction for the hydrogen molecule ion
H+

2 , we see that the wavefunctions, based on symmetry, are:

– symmetric
Ψg = 1√

2(1+SAB)
(φ1s,A + φ1sB)

– anti-symmetric
Ψu = 1√

2(1−SAB)
(φ1s,A − φ1sB)

– Eg < Eu. The bonding state must have a lower energy relative to
the infinitely separated state compared to the anti-bonding state.

Chemical Bonding and the Molecular Wavefunction

– Molecular orbitals can help us understand a few concepts related
to chemical bonding

– Bonding orbitals have no nodes; anti-bonding orbital has a node
midway between the nuclei

∗ Probability of finding electron along the coordinate linking
the two nuclei

∗ Non bonded case: electron equally likely found on either nu-
cleus

∗ For both the bonding and anti-bonding orbitals, the volume

accessible to the electron is greater than in the non-bonded
case.

∗ Electron in bonded case is delocalized

∗ Differences in the probability for bonding and anti-bonding
orbitals

· Electron probability greater between nuclei for bonding
orbital than anti-bonding orbital
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· For bonding orbital, electron density moves closer to re-
gion between nuclei as well as closer to each nucleus.

∗ Ingredients for chemical bond formation: electron density
delocalization over entire molecule. Bonding orbital in-

creases electron probability density between nuclei and closer
to each nuclei; anti-bonding orbital increases electron prob-
ability density away from region between nuclei.

Linear Combination of Atomic Orbitals-Molecular Or-

bitals

For many-electron molecules, the problem of solving the n-electron

problem is reduced to solving n one-electron problems via the
Hartree approximation. The one-electron molecular orbitals

are solved for via a Schrodinger equation of the form:

ĤHFσi (ri) = εiσi (ri) i = 1, 2, ..., n

The molecular orbitals σi are expressed as linear combinations

of atomic orbitals, hence the LCAO-MO approach. For an n-
electron system, the Slater determinantal form of the wavefunc-
tion is :

ψ(1, 2, 3, ..., n) =
1√
n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ1(r1, α1) σ1(r1, β1) . . . σm(r1, β1)
σ1(r2, α2) σ2(r2, β2) . . . σm(r2, β2)

...
...

...
σ1(rn, αn) σ2(rn,n ) . . . σm(rn, βn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

where m = n
2 if n is even and m = n+1

2 if n is odd. The molec-
ular orbitals, σi are expressed as linear combinations of atomic
orbitals (AO’s) as:

σj(r1) =
∞
∑

i=1

cijφi(r1)

The sum is over atomic orbitals on all atoms and the subscript
”1” refers to the electron being considered. The set of AO’s φi
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are a basis, and since the infinite set forms a complete set, the
MO’s expressed as linear combinations of AO’s are in practice
approximate, since we cannot use an infinite expansion.

The coefficients (and variable exponents in the radial parts of the
atomic orbitals) are optimized variationally using the Hartree-
Fock method. In deriving the variational equations, one obtains
the Secular equations, which in matrix form, are associated with
the Secular determinant. The solutions of the cij are determined
by solving for the zeroes of the secular determinant.

In general, n atomic orbitals used in defining the molecular or-
bitals yields n molecular orbitals.

We can use molecular orbital diagrams to visualize the ener-
getics of molecular orbitals. Before we construct such diagrams
for simple diatomic molecules (homonuclear and heteronuclear),
we present some general ideas:

∗ Only atomic orbitals of the same symmetry will combine with
one another (maximize overlap)

∗ Two interacting AO’s give rise to two molecular orbitals.

· The MO energies will be different relative to the AO en-
ergies. A necessary condition for this splitting is non-zero
overlap of the AO’s in the molecule.

∗ The MO with the lower energy is the in-phase combination
of AO’s, and is called the bonding orbital.

∗ The MO with the higher energy is the out-of-phase combi-
nation of AO’s and is called the anti-bonding orbital.

∗ The energy splitting between MO increases with overlap

∗ The relative contribution of two AO’s in a MO is determined
by the relative magnitude of their coefficients.

· AO’s with equal energy will give equal coefficients for the
MO

· AO’s with different energies: the magnitude of the co-
efficient of the lower-lying AO is greater in the bonding
orbital and smaller in the anti-bonding orbital

Symmetry of molecular orbitals:

∗ gerade(g): symmetric upon inversion

∗ ungerade(u): antisymmetric upon inversion

∗ σ symmetry: rotation about the molecular axis leaves MO
unchanged
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∗ π symmetry: nodal plane includes molecular axis

Molecular Orbitals for Homonuclear Diatomic Molecules

For the sequence of molecules H2 to N2, the MO orbital energies
(via Hartree-Fock) are:
1σg < 1σ∗u < 2σg < 2σ∗u < 1πu < 3σg < 1π∗g < 3σ∗u
σg(1s) < σ∗u(1s) < σg(2s) < σ∗u(2s) < πu(2px, 2py) < σg(2pz) <
π∗g(2px, 2py) < σ∗u(2pz)
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