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I. Hartree-Fock with Antisymmetrized Wavefunctions

Recall the earlier discussion of the Hartree-Fock self-consistent method. For
the purposes of that introduction, we used trial wavefunctions that were
simple products of single-electron orbitals. We did not account for antisym-
metry and Pauli exclusion. Here, we will briefly formulate the Hartree-Fock
method with anti-symmetric wavefunctions. The results of this analysis will
give rise to the already determined orbital energies and electron-electron
repulsion terms (Coulomb integral), as well as a new term arising from the
antisymmetric nature of the wavefunction—exchange integral. Keep in mind
that the following does still not consider explicitly effects of electron corre-
lation (though, depending on the source, the exchange term is thought to
contribute some amount to correlation).

The N-electron Slater determinantal wavefunction form, recall, is:

Ψ(r1, σ1, r2, σ2, ..., rN , σN ) =
1√
N !
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For closed shell systems each spatial orbital is occupied by 2 electrons (of
opposite spin). Thus we require a single Slater determinant:

Ψ(r1, σ1, r2, σ2, ..., r2N , σ2N ) =

1
√

(2N)!
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φ1(r1)α(σ1) φ2(r1)β(σ1) . . . φN (r1)α(σ1) φN (r1)β(σ1)
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The Hamiltonian operating only on spatial coordinates in atomic units
is:

Ĥ = −1

2

2N
∑

j=1

∇2
j −

2N
∑

j=1

Z

rj

+
2N
∑

i=1

2N
∑

j>i

1

rij

The Hartree-Fock total energies,for this closed-shell configuration much
like we have seen earlier are:

E = 2
N
∑

j=1

Ij +
N
∑

i=1

N
∑

j=1

(2Jij − Kij)

The various terms in the energy expression are:

Ij =

∫

φ∗

j(rj)

[

−
∇2

j

2
− Z

rj

]

φj(rj)drj

Jij =

∫ ∫

φ∗

i (r1)φ
∗

j (r2)
1

r12
φi(r1)φj(r2)dr1dr2 Coulomb Integral

Kij =

∫ ∫

φ∗

i (r1)φ
∗

j (r2)
1

r12
φi(r2)φj(r1)dr1dr2 Exchange Integral i 6= j

NOTE:
In the definitions of the various one- and two-electron integrals listed im-
mediately above, the summations are effectively over orbitals. These can be
written in terms of summations over electrons with minor modifications in
the leading multiplicative factors (see Szabo and Ostlund for further details).

Let’s consider the meaning of the Coulomb and Exchange terms we have
discussed just now. The coulomb integral can be rearranged as:

∫ ∫

φ2
i (r1)

1

r12
φ2

j(r2)dr1dr2

The square of the wavefunction is the probability of finding an electron at
a given point in space. So this term is the energy of the Coulombic interac-
tion between an electron in orbital i with an electron in orbital j. For this
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reason, this integral is called the Coulomb Integral. Because the Coulomb
potential is always positive for like charges, and the square of the wavefunc-
tion is always positive, this term contributes a positive energy to the toatl
energy. This is a destabilizing energy contribution (arising from unfavorable
repulsion).

The Exchange integral has no immediate classical interpretation. The name
arises from the fact that the 2 electrons exchange their positions from the
left to the right of the integrand, and in this sense the integral is connected
to the Pauli principle.

The probability density for two electrons is significantly different in the
case of an antisymmetrized Slater Determinant than in the simple Hartree
product. The total density is not a simple product of each orbital density.
The Coulomb integral expression suggests that the total probability is of
a product-like nature. But since we have incorporated the antisymmetric
nature of electronic wavefunctions via the Slater Determinantal form, the
effect is apparane tin the form of the exchange integrals which arise nat-
urally The total density is not a simple product of each orbital density.
The Coulomb integral expression suggests that the total probability is of
a product-like nature. But since we have incorporated the antisymmetric
nature of electronic wavefunctions via the Slater Determinantal form, the ef-
fect is apparanet in the form of the exchange integrals which arise naturally.
The exchange integrals ”correct” the Coulomb integrals to take into account
the antisymmetry of the wavefunction. It is easy to show that electrons of
the same spin are more ”correlated” in the Slater Determinantal form than
in the Hartree Product form, so the Coulomb integrals should exaggerate
the Coulomb repulsion of the electrons since the purely Coulomb integrals
represent a probability that is of the form of a Hartree product wavefunc-
tion. Keep in mind that the ”correlation” we introduce here is still not
the total correlation between electrons, as the effect fundamentally arises
from the indistinguishablity of electrons (as embodied in the antisymetrized
wavefunctions) and has nothing to do with electron correlation. This is a
subtle matter of semantics one should bear in mind.

The Hartree-Fock Method with Antisymmetric Wavefunctions

The variational principle yields the Hartree-Fock equation for each orbital:

F̂iφi = εiφi

F̂i = f̂i +
N
∑

j=1

(

2Ĵj − K̂j

)

Fock Operator
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The various secondary operators embedded in the Fock operator are defined
as:

f̂i = −∇2
i

2
− Z

ri

Ĵj(r1)φi(r1) = φi(r1)

∫

φ∗

j (r2)
1

r12
φj(r2)dr2

K̂j(r1)φi(r1) = φj(r1)

∫

φ∗

j(r2)
1

r12
φi(r2)dr2

With these operators defined, one follows the protocol introduced earlier to
solve the individual orbital Fock equations to obtain self-consistently the
orbitals and orbital energies.

To summarize:

• Coulomb integrals describe repulsions between pairs of electrons. Al-
ways positive: integrands are positive everywhere (repulsion!)

• Exchange integrals arise through exchange of indistinguishable elec-
trons. Positive, but have positive and negative intgrand contributions.

• Orbital energies are generally associated with ionization potentials
(Koopman’s Theorem).

Splitting of Hydrogen atom orbital energies due to many-electron shielding

effects.

Splitting of Hydrogen Atom energy levels in Many-Electron Atoms
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• Orbital energies are non-degenerate

• Relative orbital energetics for many-electron atoms are determined
through interplay of one-electron kinetic and nuclear-electron interac-
tions, electron-electron repulsions, and exchange effects. Thus, relative
stabilities of many-electron atom orbitals are defined in a non-intuitive
manner

• Afbau principle guides filling of orbitals

Angular Momentum of Many-Electron Atoms
Energies for various orbitals of many-electron atoms are dependent on spin
and orbital angular momentum. Unlike the case for a single electron atom
such as Hydrogen, the quantum numbers n, l, ml, and ms are no longer valid
(or good) quantum numbers to define the system. This is intuitively so since
we now have a plethora of combinations of orbital angular momentum and
spin that can give rise to a multitude of atomic electronic states.

The implication of the last statement is that for a given elec-
tronic configuration, there are numerous states that exist. These
states can be grouped together based on the equivalence of their
energies. These groupings are called Atomic Terms. We now turn
to a discussion of how these terms are obtained given a configuration.
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For many-electron atoms, the total orbital angular momentum and total
spin vectors are determined by simple vectorial addition of the orbital and
spin momenta of the indificual electrons:

~L =
∑

i

~li

~S =
∑

i

~si

The magnitude of the vectors is related to the quantum numbers for many-
electron atoms, L and S, as:

∣

∣

∣

~L
∣

∣

∣ =
√

L(L + 1)h̄ L = 0, 1, 2, 3, ...
∣

∣

∣

~Lz

∣

∣

∣ = MLh̄ ML = 0,±1,±2,±3, ...
∣

∣

∣

~S
∣

∣

∣ =
√

S(S + 1)h̄ S = 0,
1

2
, 1,

3

2
, ...

∣
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∣

~Sz

∣

∣

∣ = MS h̄ MS = 0,
±1

2
,±1,

±3

2
, ...

Furthermore, since the vectors add vectorially, we can easily obtain ML and
MS as:

ML =
∑

i

ml,i

MS =
∑

i

ms,i

We can define operators for the total angular momentum and spin vectors
as we did for the one-electron case as follows:

Ŝz =
∑

i

ŝz,i

L̂z =
∑

i

l̂z,i

Ŝ2 = ŜŜ =

(

∑

i

ŝi

)2

L̂2 = L̂L̂ =

(

∑

i

l̂i

)2
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Energy of a Configuration depends on
∣

∣

∣

~S
∣

∣

∣ and
∣

∣

∣

~L
∣

∣

∣ (L and S

quantum numbers for many-electron systems)

Consider the first excited state of Helium with configuration: 1s1 2s1 . For
this configuration (recalling the above definitions), L = 0 (s-orbitals have
no angular momentum). Thus, we are left with spin to consider. What pos-
sibilities can we think of that will accommodate 2 electrons in two different
s-orbitals. The following shows an enumeration:

• ↑ ↑ MS =
∑

i ms,i = +1
2 + 1

2 = 1

• ↑ ↓ MS =
∑

i ms,i = +1
2 − 1

2 = 0

• ↓ ↑ MS =
∑

i ms,i = −1
2 + 1

2 = 0

• ↓ ↓ MS =
∑

i ms,i = −1
2 − 1

2 = −1

Now, to analyze the results of the above enumeration. We see that the
maximum value of MS is 1. If we consider the analogy to orbital angular
momentum for the hydrogen atom case, we recall the relation between ml

and l as:

|ml| ≤ l

By analogy,

|MS | ≤ S

Thus, the MS = 1 value indicates that there is a group of states for which
S = 1; it also requires that there be 3 states for this S value to correspond
to the 3 values that MS can take, namely MS = 1, 0,−1. This takes care
of 3 of the 4 states we enumerated above. The last state corresponds to a
MS value of zero. Thus, for this single state, S = 0 as well (by necessity).
Thus, we see the following:

• There are two groups of states that emerge because of the various
combinations of spin states of multiple electrons

• One group is comprised of 3 states; this is a triplet (and because L=0,
it is triplet S, 3S.)

• The second is comprised of 1 state; this is a singlet (and because L=0,
it is singlet S, 1S.)
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• For reasons that we will not consider here, the triplet state is lower in
energy than the singlet state. See Supplemental section 21.10 in Engel
and Reid)

Dependence of energies of configurations on L

We have seen that S affects the energies of configurations. Since the val-
ues of ml and ms of individual electrons are related by the Pauli exclusion
principle, we have to ask under what conditions does the choice of
particular values of ml and ms for a given configuration lead to
different spatial distributions of electrons and therefore to a dif-
ferent electron-electron repulsion.

The answer is that we are concerned with systems with 2 unpaired electrons
in valence (outermost) subshells; equivalently, we would like to know the
multiple states that arise as combinations of the multiple choices possible
for ml and ms consistent with the Pauli exclusion principle.

Atomic Terms

We define an atomic term as a group of states with the same L and S value,
but different ML and MS values. These states are of equal energy if there
is no spin-orbit coupling (to be discussed further below).

Once we know L and S, we can determine the number of states that
belong to this term; this is the degeneracy of the term. Again, in the
absence of spin-orbit coupling, we see that the degeneracy is:

degeneracy = (2L + 1)(2S + 1)
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Another quantity associated with terms is the spin multiplicity calculated
as 2S + 1.

The convention for specifying an atomic term is the term symbol:

2S+1L

don’t confuse the L in the last equation with the orbital angular
momentum quantum number!!!!!.

The following table lists the letter of the atomic term symbol associated
with a specific numerical quantity for L Table 2. Letter conversions for
atomic term symbols.

L Letter

0 S

1 P

2 D

3 F

4 G

5 H

1 Determining Atomic Terms in the Russel-Saunders

Scheme (R-S Scheme)

1.1 Filled Subshells

For filled subshells, L = 0 and S = 0. The atomic term is 1S, a singlet S
term. This is known as Unsold’s Theorem. (make sure you understand
why the filled subshell has no orbital or spin moment).
Filled subshells within a configuration do not contribute to L and S.
If a configuration has only a single electron outside of a filled subshell, then
the L and S values are: L = l1 and S = 1

2 . Thus the term symbol is 2l1.

1.2 Two unpaired electrons in different subshells

This case has a heuristic for determining L and S; it is called the Clebsch-
Gordan series. For configurations such as np1d1 or ns1p1 or ns1d1, where
unpaired electrons reside in different subshells, the values of L and S can
be determined as:
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L = |l1 − l2|, |l1 − l2| + 1, |l1 − l2| + 2, ....., l1 + l2

S = |s1 − s2|, |s1 − s2| + 1, |s1 − s2| + 2, ....., l1 + l2

NOTE: in the Clebsch-Gordan series, take care to use s and l
rather than ms and ml!

For the example of np1d1, the possible L values are 1, 2, 3 and the possible
S values are 0, 1. Thus the terms are:

3P, 1P, 3D, 1D, 3F, 1F

1.3 Configurations with partially filled subshells; multiple
electrons in unfilled subshells

For the general case of multiple electrons in a partially filled subshell, there is
no simple heuristic to determine L and S. But we can make use of the relation
between MS and ML to obtain information on L and S from maxmimum
values of ML and MS . First consider the case of an np2 configuration, such
as for the carbon atom.
We can enumerate the states by first determining the maximum values that
ML and MS can take. For the np2 configuration, these are 2 and 1 respec-
tively. Thus, we can construct a table of the possible states as follows

Table. Microstates for Ground State Carbon 1s12s22p2.
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ML MS

1 0 -1

2 (1+, 1−)

1 (0+, 1+) (1+, 0−),(0+, 1−) (0−, 1−)

0 (1+,−1+) (1+,−1−),(−1+, 1−), (0+, 0−) (1−,−1−)

-1 (0+,−1+) (−1+, 0−),(0+,−1−) (0−,−1−)

-2 (−1+,−1−)

Now we see how to analyze the data.

• For |ML| to be 2, |MS | can only be 0; thus, L=2 and S=0 (5 states)
1D

• For |ML| to be 1, |MS | is 1; thus L = 1 and S=1 ( 9 states) 3P

• For |ML| to be 0, |MS | is 0; thus L = 0 and S = 0 ( 1 state) 1S

• These terms correspond to Table 21.5 for p2

• NOTE: p2 and p4 configurations are equivalent; convince your-
self of this

The relative energy of different terms is determined by applying Hund’s
Rules. These are empirically determined heuristics one can use to determine
the characteristics of a given configuration. These rules are:

• Rule 1 The lowest energy term is that which has the greatest spin
multiplicity. Thus, as we have seen before, triplet states are lower in
energy than singlet states.

• Rule 2. For states with same spin multiplicity, the term with higher
orbital angular momentum lies lower in energy.

Given a configuration with partially filled subshells, the lowest energy term
can be found by determining the maximum value of ML and MS (maximize
spin and orbital angular momentum).
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2 Spin - Orbit Coupling

So far, for light nuclei, we have considered the spin of the electron and the
orbital angular momentum to be independent; as such the vectors represent-
ing these quantities add simply.

Spin-orbit coupling is about magnetic dipole moments (magnet dipoles)
interacting with one another. In this case, the dipoles are generated by
electron spin angular momentum and orbital angular momentum.
The spin of the electron establishes an intrinsic magnetic dipole mo-
ment as:

µs = −gsµb

~S

h̄

where

µb =
eh̄

2mc

is the Bohr magneton ( a fundamental unit of magnetic dipole moment).
the gs is the spin gyromagnetic ratio of the electron. It is predicted by
Dirac theory to be 2 (exactly), but experimentally has been determined to
be gs = 2.00232.
By analogy to the spin case, the magnetic moment arising from the orbital
angular momentum of the electron is:

µl = −glµb

~L

h̄

where gl = 1 is the orbital gyromagnetic ratio of the electron. (the electron
creates 2x as much dipole moment per unit spin angular momentum than
it does per unit orbital angular momentum. These magnetic dipoles
interact, leading to spin-orbit coupling.
The spin-orbit effect can be simply understood by considering the electron
at rest and taking the nucleus as moving around the electron with linear
speed, v. Since the nucleus with charge Z is moving around the electron, its
motion generates a magnetic field:

B =
Zev

cr2

If we recall that the angular momentum of this rigid rotor-like system is
L = r(mv), we can rewrite the expression for the magnetic field in terms of
the electron orbital angular momentum as:
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~B =
Ze

mcr3
~L

The energy of the spin magnetic dipole in the magnetic field generated by
the orbital angular momentum of the nucleus-electron system is given as:

ESO = −µs
~̇B

and substituing the above relation for mus, we obtain:

ESO =
Ze2

2m2c2r3
~L~̇S

the Hamiltonian for spin-orbit coupling is thus:

ĤSO =
Ze2

2m2c2r3
L̂

˙̂
S

Because of this additional term in the total Hamiltonian, the operators Lz

and Sz do not commute with the total Hamiltonian. But the total angular
momentum operator,

Ĵ = L̂ + Ŝ

can be defined, and the operators Ĵ2 and Ĵz do commute with the total
Hamiltonian. Though we will not go into the details, the physical meaning
of this is that though ~S and ~L exert equal and opposite torques on each
other, they couple together and precess about ~J so as to maintain a constant
z-projection of ~J

The action of the operators Ĵ2 and Ĵz on a wavefunction is:

Ĵ2Ψ = J(J + 1)h̄2Ψ

ĴzΨ = MJ h̄Ψ

The possible values of J are: J = |L − S|, |L − S|+ 1, |L − S| + 2, ..., L + S.
For the energy involving spin-orbit coupling, the equation we discussed above

shows that there is a term proportional to ~L~̇S. To evaluate this, we can write
as follows:

~J2 = ~J ~̇J

= (~L + ~S)(̇~L + ~S)

= ~L~L + ~S~S + 2~L~̇S
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Thus,

~L
˙

~S =
1

2

(

~J ~J − ~L~L − ~S~S
)

The spin-orbit energy is thus, (see page 11-6 in Dybowski and Teplyakov;
page 12-1 also)

ESO =
hA

2
[J(J + 1) − L(L + 1) − S(S + 1)]

Rules for filling levels arising from spin-orbit coupling in at term:

• If unfilled subshell is half-full or more, then level with highest J has
lowest energy

• If unfilled subshell is less than half-full, then level with lowest J has
lowest energy

For carbon, with valence subshell 2p2, spin-orbit coupling breaks the degen-
eracy of the 3P state to give. The J values are J = 0, 1, 2, thus giving for
the terms, 3P0,

3 P1,
3 P2 with the J = 0 state being the lowest in energy.

3 Hyperfine Coupling, Splitting, Effects

Hyperfine coupling and splitting effects lead to further splitting of the terms
into states; the nomenclature “hyperfine” indicates that the energy splittings
are rather small. The phenomenon is present in atoms, molecules, and ions.
The energy splittings arising from hyperfine coupling are generally orders
of magnitude smaller than those arising from fine structure splitting (such
as spin-orbit coupling discussed above).

Like spin-orbit coupling, hyperfine coupling involves the coupling of spin
angular momenta of the electron and nucleus, S and I. The energy depends
on the relative orientation of the nuclear and electronic spin angular mo-
menta. The hyperfine energy is given as:

Ehyperfine =
hε

2
[T (T + 1) − I(I + 1) − S(S + 1)]

For the Hydrogen atom, the nuclear and electronic spin angular momenta
numbers are I = 1

2 and S = 1
2 . Thus, T = 0, 1 and the states are

E0 =
hAhf

4

E1 =
3hAhf

4
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The energy difference is

∆E = hA (1)

The constant “A” is the hydrogen hyperfine splitting constant and is known
quite precisely; A = 1.4204057518GHz. As you can tell by the units, these
effects are associated with low energy (low frequency) radiation, such as
radio waves. The use of these techniques in radio astronomy has allowed
the characterization of celestial objects.

4 Zeeman Effect: Coupling of Atomic Magnetic

Moments to External Magnetic Fields

Orbital and spin angular momenta of electronic states lead to magnetic mo-
ments that can interact with applied external magnetic fields.
The orbital magnetic moment is related to the orbital angular momentum
by:

µL = − e

2me

~L

|µl| = − eh̄

2me

√

l(l + 1) ≡ −βo

√

l(l + 1)

|µlz | = − e

2me

Lz = − eh̄

2me

m = −βom

The electron spin magnetic moment is given by:

µs = − e

2me

g~S

|µs| = − eh̄

2me

g
√

s(s + 1) = −βog
√

s(s + 1)

µsz
= − e

2me

gSz = − eh̄

2me

gms = −βogms = ±βo

g ≡ ”electronic g factor” = 2.0023

Energetics of Magnetic Field Effects
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Potential energy in magnetic field ~B :

E = −µ
˙

~B = −µzBz =
eBz

2me

(Lz + gSz)

where the Lz and Sz are the orbital and spin angular momentum z-components.
The total Hamiltonian operator is thus:

Ĥ = Ĥo +
eBz

2me

(

L̂z + gŜz

)

ĤΨnlmms
= ĤoΨnlmms

+
eBz

2me

(

L̂zΨnlmms
+ gŜzΨnlmms

)

= EΨnlmms

E = Eo
nlmms

+ βoB(m + gms)

Thus, the Zeeman energy in a magnetic field depends on the orbital and
spin magnetic quantum numbers! Every electron orbital state is split into
spin sublevels mx = ±1/2.

Optical transitions between different electronic levels follow selection rules:

δm = ±1 δms = 0

5 Atomic Spectroscopies

• NMR, ESR (electron spin resonance). energy transfer between nu-
clear/electronic states and external magnetic fields

• Surface spectroscopies: Auger electron spectroscopy (AES), X-Ray
Photoelectron Spectroscopy (XPS) Introduce sufficient energy to ex-
tract electrons from atoms; measure kinetic energy of electrons.

• Depends on accurate assessment of inelastic mean free path (ejected
electrons interact with atoms of native material, thus losing informa-
tion of original atomic state (energy level)).

• Usually performed in vacuum to minimize energy losses

• Inelastic mean free path depends on energy of ejected electron
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• Auger: incident electron ejects core-level (low energy) electron in sur-
face atom. This hole is filled by a transition of higher energy electron
to core-level. For energy conservation, a third electron is emitted –
the Auger electron.

• XPS: simpler than Auger: only one energy level involved.

Ekinetic = hν − Ebinding

• XPS: measure the difference in local environment for different atoms.
observe chemical shift for same atom in different local environments (
free atom versus bound atom in molecular systems)
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