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Consider two masses, m1 and m2, separated by a constant distance r0. You
can think of the masses as being ”connected” or ”bonded”, but this is in
some loose sense. Mass m1 is a distance r1 from the center of mass of the
system; mass m2 is a distance r2 from the center of masss. The system is
now taken to be rotating in three dimensions about some axis of rotation.
The angular frequency (in radians

sec
) of rotation is ω. The kinetic energy of

the system is:
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where I is defined as the moment of inertia. If we consider the sum of r1

and r2 (considering only their magnitues) as r0 = r1 + r2, we can write
the moment of inertia in terms of the reduced mass as follows:
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where the reduced mass is defined as:
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Thus, the kinetic energy in terms of the reduced mass becomes:
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The last equation shows us that in terms of the reduce mass, the dynamics
of a rigid, ”diatomic” rotor is equivalent to that of a particle of reduced mass
µ (effectively, we have reduced a two-body problem to a one-body problem).
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