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1 Hydrogen Molecule: Born-Oppenheimer Approx-

imation

In this discussion, we consider the formulation of the Schrodinger equation
for diatomic molecules; this can be extended to larger molecules. First we
will consider the separation of the total Hamiltonian for a 4-body prob-
lem into a more tractable form. We will afterward discuss the molecular
wavefunctions.

For the hydrogen molecule, we are concerned with 2 nuclei and 2 elec-
trons. The total Hamiltonian, representing the total energy operator, is:
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Let’s define:
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Ĥelectronic(~r, ~R) = −
h̄2

2me

(

∇
2

1 + ∇
2

2

)

−
ZAe

2

4πε0r1A

−
ZAe

2

4πε0r2A

−
ZBe

2

4πε0r1B

−
ZBe

2

4πε0r2B

+
e2

4πε0r12

+
ZAZBe

2

4πε0RAB

1



• NOTE: For the present purposes, ĤN is only a function of ~R and
only depends on the coordinates of the nuclei. It is the bf kinetic
energy operator of the nuclei.

• Ĥelectronic(~r, ~R) is the electronic Hamiltonian.

Thus,

Ĥ(~r, ~R) = ĤN (~R) + Ĥelectronic(~r, ~R)

To solve the full Schrodinger equation for electrons and nuclei, one has
to make approximations. This is because, as in the hydrogen atom case,
there are non-radially symmetric interactions between electrons, nuclei, and
electrons-nuclei. The first approximation we make is the Born-Oppenheimer

• Due to the large relative difference in electronic and nuclear masses,
a first approximation is to assume that the time scales of motion of
electrons and nuclei are separable. Effectively, the nuclei are at rest
relative to the electrons; as the nuclear configuration changes, the
electronic degrees of freedom “relax instantaneously”. This is also
referred to the adiabatic approximation. This is a good assumption
for most cases.

• Because we consider the separation in time scales of nuclear and elec-
tronic degrees of freedom, we assume a separable ansatz of the form:

Ψ(~r, ~R) = ψel(~r, ~R) ψN (~R)

Thus, if we consider the usual approach to setting up the Schrodinger equa-
tion:

[

ĤN (~R) + Ĥelectronic(~r, ~R)
]

ψel(~r, ~R) ψN (~R) = Eψel(~r, ~R) ψN (~R)

ĤN (~R)ψel(~r, ~R) ψN (~R) + Ĥelectronic(~r, ~R)ψel(~r, ~R) ψN (~R) = Eψel(~r, ~R) ψN (~R)

ψel(~r, ~R)ĤN (~R)ψN (~R) + ψN (~R)Ĥelectronic(~r, ~R)ψel(~r, ~R) = Eψel(~r, ~R) ψN (~R)

ψel(~r, ~R)ĤN (~R)ψN (~R) + ψN (~R)Eel(~R)ψel(~r, ~R) = Eψel(~r, ~R) ψN (~R)
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[ĤN (~R) +Eel(~R)]ψN (~R) = EψN (~R)

Thus, we have arrived at a Schrodinger eqution for just the nuclear coor-
dinates (degrees of freedom). What we see is that apart from the kinetic
energy operator, there is an energy depending on only the nuclear coordi-
nates, Eel(~R). We see that this is related to the energy (for fixed nuclear
coordiantes) of the electronic Schrodinger equation:

Ĥel(~r, ~R)ψel(~r, ~R) = Eelψel(~r, ~R)

If one repeats the calculation of the electronic wavefunctions and energies
for many separations of the nuclear coordinates, one obtains a parametric
dependence of the electronic energy on the nuclear positions. This looks
like:
Solution of Schrodinger equation for each value of R leads to a set of eigen-
values Eel,n(~R) and eigenfunctions ψel,n(~r, ~R) The minimum energy corre-
sponds to the most stable nuclear geometry.

The recipe is thus:

• fix nuclear coordinates.

• solve Schrodinger equation for fixed coordinate geometry

• obtain eigenfunctions and eigenvalues; the eigenvalues and eigenfunc-
tions have parametric dependence on nuclear coordinates

• solve for nuclear part of ansatz using Eel(~R)

2 Solving the nuclear Schrodinger Equation

From the last section, we saw that the nuclear Schrodinger equation is simply

[ĤN (~R) +Eel(~R)]ψN (~R) = EψN (~R)

The kinetic energy operator for the nuclear problem can be separated into
a center of mass coordinate and an internal coordinate (the reduced mass
for instance). Thus, we still have 2 coordinate, but they are just taken to
be another set with the same information. Thus, the kinetic part can be
written as:
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Thus, the nuclear Schrodinger equation becomes
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Now, since the total Hamiltonian is separable int center of mass and inter-
nal coordinates, we again pose the separable ansatz as:

ψN (~R) = ψtranslational (~RCOM )ψint(R, θ, φ)

E = Etranslational +Eint

This allows us to obtain (show yourself) two separate Schrodinger equations
for center of mass and internal coordinates as:
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ψint(R, θ, φ) = Eintψint(R, θ, φ)

The first equation, for the center of mass, gives solutions of the form of a
free particle or PIB; doesn’t give much information on molecular nature of
molecule. The second equation is the one we are concerned with now.
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We can now separate the intramolecular wavefunction simply as :
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ψint(R, θ, φ) = χ(R)ψrotational(θ, φ) = χ(R)Y m
l (θ, φ)

Eint = Eel−vib +Erot

Consider the angular momentum part of the intramolecular Hamiltonian:
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This gives for the “R” dependent Schrodinger equation for the nuclear in-
tramolecular motion:
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Now we are left with an equation in R. We can solve this numerically by
computing E(R) for various R values. This is cumbersome (though valid).
We can also take another approach. First, let’s consider expanding E(R) in
a Taylor expansion about some equilibrium separation Re as:
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where x = R − Re. Substituting the expressin for E(R) and making the
transformation to a new function:

ψvib = χ(R) R

we obtain the following Schrodinger equation:
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Since x = R−Re and the derivatives with respect to R and x are equivalent
under this transformation, we can take the derivatives with respect to R as
with resepct to x. Also, multiplying through by “R”, we obtain:
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This is exactly the Schrodinger equation for the 1-D quantum harmonic
oscillator. We have seen solutions of this type of equation in the form of
Hermite Polynomials. The vibrational energy is simply:
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