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I. Recap: Rigid Rotation and Q. M. Orbital Angular Momen-

tum

• For 3-D rigid body rotation in absence of external potential, the kinetic
energy (thus total energy) operator in spherical, polar coordinates be-
comes:
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• The energy eigenvalues are
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• The energy eigenstates are:
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• Angular momentum is related to the total energy in the classical
sense as:

2 I Etotal = |l2|

• The quantum mechanical formulation for the relation between oepra-
tors is then:

2 I Ĥ = l̂2
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• Thus, angular momentum is quantized and the angular momentum
eigenvalues are:

l2 = h̄2 l(l + 1)

l =
√

h̄2 l(l + 1)

• The eigenvalues for the z-component of the total angular momentum
are:

lz = ±h̄ m

• Note, only one compoent of the total angular momentum operator
commutes with the operator for the total angular momentum squared
operator:

[

l̂2, l̂z

]

= 0

• This relation defines the range of the m quantum number for a given
l quantum number.

l = 0, 1, 2, 3, ....

m = 0,±1,±2,±3, ...

• At this point, we see that the energy is only dependent on l. Since there
are several states associated with different m for a given l, the energy
states associated with rigid rotation are degenerate. The degeneracy
is 2l + 1.
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