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I. Commutators: Measuring Several Properties Simultaneously

In classical mechanics, once we determine the dynamical state of a system,
we can simultaneously obtain many different system properties (i.e., ve-
locity, position, momentum, acceleration, angular/linear momentum, kinetic
and potential energies, etc.). The uncertainty is governed by the resolution
and precision of the instruments at our disposal.

In quantum mechanics, the situation is different. Consider the following:
1. We would like to measure several properties of a particle repre-

sented by a wavefunction.
2. Properties of a q.m. system can be measured experimentally. Theo-

retically, the measurement process corresponds to an operator acting on

the wavefunction. The outcomes of the measurement are the eigenvalues
that correspond to the operator. The operator is taken to be acting on a
wavefunction that is either a pure eigenfunction of the operator of interest,
or an expansion in the basis of functions.

In order to measure, for instance, 2 properties simultaneously, the wave-

function of the particle must be an eigenstate of the two operators

that corespond to the properties we would like to measure simul-

taneously.

So, consider:
We have to operators, Â and B̂. Each operator acting on its eigenstate

gives back Ai and Bj, respectively. If we have a wavefunction that is an
eigenstate of both operators, then:

ÂψAi,Bj
= AiψAi,Bj

B̂ψAi,Bj
= BjψAi,Bj
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Thus,
B̂ÂψAi,Bj

= B̂AiψAi,Bj

ÂB̂ψAi,Bj
= ÂBjψAi,Bj

So, using the fact that ψAi,Bj
is an eigenfunction of Â and B̂:

B̂ÂψAi,Bj
= BjAiψAi,Bj

ÂB̂ψAi,Bj
= AiBjψAi,Bj

Subtracting the equations, we realize a compact notation for defining what
is called a commutator:

[A,B] = ÂB̂ − B̂Â

• The commutator is itself either zero or an operator

• The order of operations is important and will give unique commutators
depending on this ordering

For two physical properties to be simultaneously observable, their

operator representations must commute.

Thus,

Â
[

B̂f(x)
]

− B̂
[

Âf(x)
]

= 0 2 operators that commute

Example Problem 17.1: Determine whether the momentum operator com-
mutes with the a) kinetic energy and b) total energy operators.
a). To determine whether the two operators commute (and importantly, to
determine whether the two observables associated with those operators can

be known simultaneously), one considers the following:
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• momentum and kinetic energy
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dx

(
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0

Thus, the momentum and kinetic energy operators commute
b). momentum and total energy

•

−ih̄
d

dx

(

−
h2

2m

d2

dx2
+ V (x)

)

f(x) −

(

−
h2

2m

d2

dx2
+ V (x)

)

(

−ih̄
d

dx

)

f(x)

(1)

• Since the momentum and kinetic energy operators commute from part
a, we can write

−ih̄
d

dx
(V (x)f(x)) + ih̄V (x)

d

dx
f(x)

−ih̄V (x)
d

dx
f(x) − ih̄f(x)

d

dx
V (x) + ih̄V (x)

d

dx
f(x)

−ih̄f(x)
d

dx
V (x)

(2)

Thus, the commutator for the momentum and total energy reduces as fol-
lows:

[

Ĥ,−ih̄
d

dx

]

=

[

V (x),−ih̄
d

dx

]

= −ih̄
d

dx
V (x)

The last equation does not equal zero identically, and thus we see two things:
1. the momentum and total energy do not commute 2. the commutator
reduces to a unique operation (we will see this again with respect to angular
momentum)

Heisenberg Uncertainty Principle

Recall the discussion of the free particle. For that system, we determined
that the energy (and momentum) spectrum is continuous since there were
no boundary conditions imposed on the wavefunction (thus we arrive at
plan-wave representations of the particle-wave entity).
The important point for the present dicussion is the relation between our
knowledge of the momentum of the particle and its position. We note a few
things:
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• Given an initial velocity, the momentum is defined exactly.

• Since energy is conserved, the momentum does not change with time

• The probability of finding the one-dimensional quantum mechanical
free particle in an interval dx at x is given as (Equation 15.6, Engell
and Reid):

P (x)dx =
dx

2L
(3)

This is based on a plane-wave form of the wavefunction which cannot
be normalized over an infinite interval; thus the interval for consider-
ation is taken to be 2L.

• We see that if we consider an extremely large interval (vis−a−vis, L→

∞), the probabililty becomes vanishingly small, but it is equivalent
everywhere. Thus, we lose any information on the exact loca-
tion(position) of the free particle.

If we further consider the commutator of the momentum and position oper-
ators, we will find that (derivation left for individual pursuit)

[x̂, p̂x] 6= 0

We see that if we knew exactly the momentum (k = p
h̄
), then the position

is essentially unknown (particularly if we consider an infinite extent for the
particle motion). Conversely, though we have not shown it rigorously, if one
knows the location exactly, then the momentum becomes uncertain. This
relation between the uncertainties in momentum and position is embodied
in the Heisenberg Uncertainty Principle, stated as:

δpδx ≥
h̄

2

For a quantum mechanical description of a particle’s dynamics, we cannot
know exactly and simultaneously both the particle’s position and momen-
tum. We must accept an uncertainty in measurements of these quantities
as given by the inequality.

Note: On a more fundamental level, the Heisenberg principle is related to

properties of Fourier Transforms via the Cauchy inequality. This is a topic

for an advanced discussion, but one should take note here of the interplay

between the results of pure mathematics and the physical interpretation a

physics-based analysis confers on them; this is non-trivial.
Wave Packets

Here we present a very coarse discussion on the origins of the uncertainty
relations.
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• The free particle plane-wave function is

Ψ(x, t) = A ei(kx−ωt−α)

Consider the wavefunction at time t = 0 and ignore the phase shift for
the present purpose.

• Let’s expand the particle wavefunction representation around a wavevec-
tor k0

ψ(x) =
1

2
Aeikox +

1

2
A

n=+m
∑

n=−m

ei(ko+n∆k)x

with ∆k <<< k.

• As shown in Figure 17.4 in Engell and Reid, as we add more and
more plane-waves of slightly different wave-vectors (hence momenta),
the superposition wavefunction in position space becomes more and
more localized. The probability density of the particle becomes more
narrow and highly peaked about some reference position.

• However, as the uncertainty in the position of the particle has de-

creased, the uncertainty in the momentum has increased.

• For the contrived problem we are considering here, we can propose
a bound on the values of the momentum we measure since we have
expanded about some reference wave-vector k0:

h̄ (k0 −m∆k) ≤ p ≤ h̄ (k0 +m∆k)

• As a result of the superposition of many plane waves, the position
of the particle is no longer completely unknown (we have reduced the
uncertainty in position), and the momentum of the particle is no longer
exactly known (we have increased the uncertainty in momentum).

• Both momentum and position cannot be known exactly and

simultaneously in quantum mechanics. We must accept a

trade off.

To relate the uncertainty principle to variances and statistical measures, the
relation:

σxσp ≥
h̄

2
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can be used in conjunction with wavefunctions and definitions of average
properties:

σ2
p =< p2 > − < p >2 (likewise for σx )
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