
Quantum Mechanics: Particles in Potentials

7 april 2009

I. Applications of the Postulates of Quantum Mechanics

Now that some of the machinery of quantum mechanics has been assem-
bled, one can begin to apply the concepts of wavefunctions, superposition,
eigenfunctions, operators, eigenvalues, observables, etc. to derive wavefunc-
tions for several model systems. These will afford insight in to some fun-
damental ideas to be extended later in the context of more complicated
systems.

The first system will be a free particle, i.e., a particle with no exter-
nal potential acting on it. The second system will be a particle in a one-
dimensional box with a defined external potential, V (x).

1. Free Particle

Consider a free particle, i.e., one that does not have an external poten-
tial acting upon it. In the development of the time-independent Schrodinger
equation discussed earlier, the total energy of a quantum mechanical state is
taken to be composed of a Kinetic and a Potential component. In this first
example, consider the potential is constant everywhere; in this case, there
is no spatial dependence of the potential. Moreover, since the potential is
everywhere equal, we can allow it to be null everywhere.

Thus, the time-independent Schrodinger equation becomes,

−~
2

2m

∂2ψ(x)

∂x2
= Eψ(x)

Rearranging, we have:

∂2ψ(x)

∂x2
=

−2m

~2
Eψ(x)
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Solutions to this equation are of the form:

ψ+(x) = A+e
+i
√

2mE/~2x = A+e
+ikx

ψ−(x) = A−e
−i
√

2mE/~2x = A−e
−ikx

Here the relation k = 2π/λ =
√

2mE/~2 has been used. To obtain
the time-dependent wavefunction, one can multiply the spatially-dependent
function by the time dependent e−iωt.

Note: Solutions are plane waves (moving in +x and −x directions)
Note: This result is analogous to the classical solution to a free particle

moving in zero external field with constant velocity. This results from
the fact that the wavevector, k = 2π/λ =

√

2mE/~2 = mv/~ is constant.
Thus, the velocity of the wavefunction has to be constant and equal to the
initial specified velocity.

Note: The Energy can take on all values (k is continuous). Thus, the
quantum mechanical free particle can take on a continuous spectrum of
energies. Keep in mind that for the free particle, we have NOT im-

posed any BOUNDARY conditions or restrictions on the behavior

of the wavefunction, apart from the requirement that it satisfy a

second-order differential equation.
Note: The free particle wavefunction is not localized in space. Thus

it cannot be normalized over the range −∞to∞. It is a plane wave. One
can show that the probability of finding the particle in an interval, dx about
x is when the range of valid x is restricted to the interval −LxL:

P (x) =
1

2L

The probability is simply dependent on the inverse of the length of the
region over which the wavefunction is normalized. This demonstrates that
P (x) is simply the inverse of the spatial distance over which the wavefunction
is relevant. All positions are equally likely to be ”harboring”the particle.
The particle is equally likely to be everywhere.
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Note: The notion that the particle has equal probability of being any-
where tells us nothing with certainty of where the particle is. We do know,
however, the momentum of the particle since we know the wavevector, k.
This is a prelude to the uncertainty conditions.

II. Particle in a One-Dimensional Box

Consider a particle confined in the x-direction to a region from x=0 to
x=a (a = the box length). At the points x=0 and x=a, there is a wall,
modelled as an infinite potential. Thus, the potential is described mathe-
matically:

V (x) = 0 for 0 < x < a

V (x) = ∞ for x ≥ a, x ≤ 0

What are the corresponding eigenfunctions and eigenvalues for this poten-
tial (recall that in the free particle case, the potential was pre-set to be zero
everywhere in space)?

The time-independent Schrodinger equation is written as:

∂2ψ(x)

∂x2
=

2m

~2
[V (x) −E]ψ(x)

Consider: 1. The wavefunction must be zero outside of the box; the second
derivative cannot be ∞ as would be the case for ∞ potential.

2. The wavefunction must be continuous in the box (and at the edges).
Thus, ψ(0) = ψ(a) = 0.

The boundary conditions for this problem are thus:

ψ(0) = ψ(a) = 0

IIa. Wavefunctions for a Particle in a Box: 1-Dimensional
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Since the potential within the box is zero, we can treat the particle with
wavefunction forms analogous to the free particle case:

ψ(x) = Asin(kx) +Bcos(kx)

Applying the boundary condition just mentioned, we obtain:

ψ(0) = 0 +B = 0

Thus, B = 0 in order to conform to this boundary condition!

ψ(a) = Asin(ka) +B = 0

We note that A cannot be zero (wouldn’t have a wavefunction then). The
second equality is fulfilled for certain combinations of ka.

ka = n(π) n = 1, 2, 3, ...,∞

Thus, the wavefunction is of the form:

ψ(x) = Asin
(nπx

a

)

The complete set of eigenfunctions for this case is thus:

ψn(x) = Asin
(nπx

a

)

n = 1, 2, 3, ...,∞

Each value of n corresponds to a different eigenfunction of Ĥ(particle in a box).
This is the infinite set of eigenfunctions of the total energy operator,i.e.
Hamiltonian, for the potential energy function corresponding to infinite, im-
penetrable walls at the edges of a one-dimensional box.

IIb1. Normalizing the Wavefunction: The particle has to be there

There is now only the constant A to worry about. This can be determined
by recalling that, as postulated, the norm of the wavefunction corresponds
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to the probability of finding the particle in a certain interval of space. This
has to be unity since we have defined the particle to be in the box. Thus,
normalizing the wavefunctions as derived above:

∫ a

0
ψ∗

n(x)ψn(x) dx = 1

A∗A

∫ a

0
sin2

(nπx

a

)

dx = 1

Using standard Table of integrals:

A =
√

2/a

The final wavefunction form is thus:

ψn(x) =
√

2/a sin
(nπx

a

)

n = 1, 2, 3, ...,∞
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IIb2. The Eigenvalues

The eigenvalues are determined by substituting the general solution back
into the eigenvalue equation; this yields:

En =
~

2

2m

(nπ

a

)2
=

h2n2

8ma2
n = 1, 2, 3, ...,∞

Note: The energy values obtained from possible measurements on this sys-
tem are now discretized or quantized in contrast to the case of the free
particle for which the energies available were continuous.

This arises due to the boundary condition imposed ka = nπ. Since k is the
wavevector related to the energy as follows:

k =
2π

λ

k =
p

~

k =

√
2mE

~
free particle inside box

Thus, the boundary condition ka = nπ becomes,

ka = a

√
2mE

~
= nπ
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Rearranging the last equation to solve for E gives the above-derived equa-
tion for the quantized energy levels for the 1-D particle in a box.

Note: The number, n, is a quantum number.

Note: The lowest energy allowable is not zero; this lowest energy corre-
sponds to the zero-point energy of the system.

III. On the Nature of the Wavefunctions for a Particle in a 1-

Dimensional Box

1. The wavefunction is a stationary state (problem initially defined with
two nodes at x=0 and x=a).
2. Energy of eigenstates is quantized. Each eigenstate (eigenfunction) adds
1/2 wavelength and increases number of nodes by 1.
3. Probability of finding a particle in a finite interval dx in the box.

As the quantum number increases to large values, probability of parti-
cle position approaches uniform distribution in the region [0,a]. This is the
classical limit. Quantum mechanics approaches classical mechanics in the
limit of large quantum numbers.

As the quantum number increases to large values, the relative spacing
between energy levels (eigenstates) becomes infinitesimally small; the en-
ergy spectrum appears continuous as for the classical free particle (discussed
above). This is the classical limit. Quantum mechanics approaches classical
mechanics in the limit of large quantum numbers.

A more concrete description of this is shown in Example 15.1 of Engel and
Reid (page 325). If one considers the relative energy spacing between levels
as given by:

En+1 −En

En
=
h2[(n+ 1)2 − n2]/8ma2

h2n2/8ma2

En+1 −En

En
=

2n+ 1

n2

IV. Particle in 2 and 3 Dimensional Boxes
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Consider a 3-dimensional box of side lengths a, b, c. As in the case of a
one-dimensional box, the regions outside of the box are defined to have an
infinite potential. Thus

V (x, y, z) = 0 for 0 < x < a, 0 < x < b, 0 < x < c

V (x, y, z) = ∞ everywhere else

The eigenvalue equation for the 3-D case becomes (note, the wavefunction
is now ψ(x, y, z)):

−~
2

2m

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

ψ(x, y, z) = Eψ(x, y, z)

Since the potential in the box is independent of (x,y,z), one assumes that
the wavefunction is a product of three indepdendent functions:

ψ(x, y, z) = X(x)Y (y)Z(z)

This results straightforwardly in the following three eigenvalue equations
for each dimension:

−~
2

2m

∂2E(x)

∂x2
= ExX(x)

−~
2

2m

∂2E(y)

∂y2
= EyX(y)

−~
2

2m

∂2E(z)

∂z2
= EzX(z)

By analogy to the one-dimensional case:

ψ(x, y, z) = ψnx,ny,nz
(x, y, z) =

√

8

abc
sin

(nxπx

a

)

sin
(nyπy

b

)

sin
(nzπz

c

)
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The total energy can be written as a sum of the independent terms corre-
sponding to different wavefunctions (degrees of freedom), E = Ex + Ey + Ez.

The eigenvalues become:

Enx,ny,nz
=

h2

8m

(

n2
x

a2
+
n2

y

b2
+
n2

z

c2

)

nx, ny, nz = 1, 2, 3, ...,∞

Note: Since the energy depends on three quantum numbers, the concept of
degeneracy arises naturally. For instance, an energy of 14 (in reduced units)
can be obtained for a cubic box (a=b=c) in the following ways: (n2

x =
9, n2

y = 4, n2
z = 1), (n2

x = 9, n2
y = 1, n2

z = 4), (n2
x = 1, n2

y = 4, n2
z = 9), (n2

x =
1, n2

y = 9, n2
z = 4), (n2

x = 4, n2
y = 1, n2

z = 9), (n2
x = 4, n2

y = 9, n2
z = 1), etc....

Thus, the number of ways in which the same energy is realized is the de-

generacy. Equivalently, the degeneracy gives the number of states with the
same energy.

A simple table for a 3-D particle in a cubic box of dimensions a = b = c :

State nx ny nz n = (n2
x + n2

y + n2
z) Energy in units of h2

8ma2

Lowest 1 0 0 1 1

Lowest 0 1 0 1 1

Lowest 0 0 1 1 1

First Excited 1 1 0 2 2

First Excited 1 0 1 2 2

First Excited 0 1 1 2 2

Second Excited 1 1 1 3 3
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