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1 The Wave Equation

We have seen from previous discussions that the wave-particle duality of
matter requires we describe entities through some wave-form based represe-
nation. The most natural consideration are classical waves, and arriving at
a way to describe their spatial and temporal evolution. In the following
discussion, pursuing this description for quantum entities will lead us to the
Schroedinger equation, our starting point for treating atomic and molecular
systems.
The motion of classical, non-dispersive waves requires some definitions:

frequency =
1

T
= ν

wavelength = λ

velocity = v = λν

A general expression for a wave moving in the +x direction:

ψ(x, t) = A sin

[

2π

(
x

λ
−

t

T

)]

ψ(x, t) = A sin

[(
2πx

λ
−

2πt

T

)]

ψ(x, t) = A sin (kx− ωt)

• wavevector, k

k = |k| =
2π

λ

wave vector units of inverse length ( 1

length
)

Recall:

λ =
h

p
(1)
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• Angular frequency (radians/second)

ω = 2πν

Note that a phase-shift can be introduced in order to change the origin of
the waveform:

ψ(x, t) = A sin (kx− ωt+ φ)

Now, let’s consider stationary, or standing, waves; for such entities,
the nodes remain fixed in time and space (though the wave is moving with
velocity, v). Standing waves are generated from interference of waves of
equal frequency and amplitude traveling in opposite directions.

ψ(x, t) = A sin (kx− ωt) +A sin (kx+ ωt)

ψ(x, t) = 2Asin(kx) cos (ωt)

ψ(x, t) = ψ(x) cos (ωt) (2)

ψ(x, t) = ψ(x)
︸ ︷︷ ︸

time−independent

cos (ωt)
︸ ︷︷ ︸

time−dependent

Thus, from the last expression, we see that stationary waves have fixed nodal
points; zero amplitude versus time at fixed points). Now, we have gone about
things in a reverse manner, but we can consider the following. We have
written a representation of a wave-particle entity as a sinusoidal function.
This is our attempt to describe the spatial and time dependence of an entity.
However, this is one particular solution to the more general representation
of the represenation of a state of an entitity (particle, wave, etc). We know
that a particle’s trajectory is determined classically via Newton’s equation,
F = ma. Thus, if we were to consider an analogous treatment for a string
with certain mass density and tension T, along which we have a wave form
moving, we can derive what is known classically as the wave equation,

∂2ψ(x, t)

∂x2
=

1

v2

∂2ψ(x, t)

∂t2

with v = λν as the wave velocity. The ψx, t as stationary waves are
solutions of the wave equation.

2 Quantum Mechanical Waves and the Schroedinger

Equation

Now, taking the stationary wave form
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ψ(x, t) = ψ(x) cos (ωt)

(3)

we will substitute our solution into the wave equation to arrive at:

∂2ψ(x)

∂x2
cos(ωt) +

ω2

v2
ψ(x) cos(ωt) = 0

∂2ψ(x)

∂x2
+
ω2

v2
ψ(x) = 0

Recalling: ω = 2πν and v = λν,

∂2ψ(x)

∂x2
+

4π2

λ2
ψ(x) = 0

Now let’s introduce our quantum mechanical connections to the classical
progression we have been following. Consider the total energy of a particle
moving along the x-direction. We can generally say (from our classical
intuition) that:

Etotal = KE + PE

Etotal =
p2

2m
+ V (x)

where the general potential energy, V(x), is acknowledged to be some spatially-
dependent potential (i.e., graviational potential, harmonic potential,etc.)
Now consider,

p2

2m
= Etotal − V (x)

p =
√

2m (Etotal − V (x))

Recalling the de Broglie relation, λ = h
p
,

λ2 =
h2

2m (Etotal − V (x))

Thus, recalling (once again),
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∂2ψ(x)

∂x2
+

4π2

λ2
ψ(x) = 0

∂2ψ(x)

∂x2
+

8π2m

h2
(Etotal − V (x)) ψ(x) = 0

h̄ =
h

2π
∂2ψ(x)

∂x2
+

2m

h̄2
(Etotal − V (x)) ψ(x) = 0

−h̄2

2m

∂2ψ(x)

∂x2
+ V (x) ψ(x) = Etotal ψ(x)

The last equation is the 1-Dimensional, time-independent Schroedinger

Equation for a particle in a potential, V(x),

−h̄2

2m

∂2ψ(x)

∂x2
+ V (x) ψ(x) = Etotal ψ(x)

We can rearrange the equation a little to see that it turns out to be an
Eigenvalue equation as follows:

[

−h̄2

2m

∂2

∂x2
+ V (x)

]

ψ(x) = Etotal ψ(x)

If we lump the terms in the square bracket as an operator, which is called
the Hamiltonian Operator, we see that

[

−h̄2

2m

∂2

∂x2
+ V (x)

]

︸ ︷︷ ︸

Ĥ

ψ(x) = Etotal ψ(x)

Ĥψ(x) = Etotalψ(x)

This is an eigenvalue equation since (in words), an operator (Ĥ) acting on
a function (ψ(x)) yields a scalar (Etotal) times the original function (ψ(x)).
This is the operational definition of the eigenvalue problem.
NOTE: the function ψ(x) is an eigenfunction or eigenstate of the oper-

ator Ĥ. The scalar Etotal is the eigenvalue.
For completeness, we briefly address the time-dependent Schroedinger Equa-
tion, simply introduced here as:

ih̄
∂ψ(x, t)

∂t
=

−h̄2

2m

∂2ψ(x)

∂x2
+ V (x, t) ψ(x, t)
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The time dependence allows the treatment of non-stationary waves as well
as systems where the energy is time-dependent. For stationary states, we
know:

ψ(x, t) = ψ(x) f(t)

ih̄ψ(x)
∂f(t)

∂t
= Eψ(x) f(t)

∂f(t)

∂t
=

−iE

h̄
dt

d ln(f(t)) =
−iE

h̄
dt

f(t) = e
−iE

h̄
t

Thus,

ψ(x, t) = ψ(x) e
−iE

h̄
t

we recover the product of spatial and time-dependent functions.

3 Operators, Observables, Eigenfunctions, and Eigen-

values

• Operators are the actions performed on a wavefunction (or state).
Above, we defined the Hamiltonian operator for the total energy of a
system.

• Every measureable property (observable) such as energy, momentum,
position has a quantum mechanical operator.

• Operators have associated with them a set of eigenfuntions, that in
turn have eigenvalues associated with them.

• For an operator Ô, with wavefunctions, ψn related as:

Ô ψn = an ψn

• The functions are known as eigenfunctions and the an are eigen-

values.

• The eigenvalues for quantum mechanical operators are real-valued
since they correspond to experimental observables.
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• There are, in general, an infinite number of eigenfunctions for a given
operator for a specific system under consideration. These eigenfunc-
tions can be considered to form a complete basis.

• Recalling the time-independent Schrodinger Equation for one dimen-
sion, we see that the differential equation maps to an eigenvalue prob-
lem. Solving the time-independent Schroedinger equation:

[

−h̄2

2m

∂2

∂x2
+ V (x)

]

︸ ︷︷ ︸

Ĥ

ψn(x) = Etotal ψn(x)

corresponds to finding the set of eigenfunctions and eigenvalues that
are the solutions to the eigenvalue problem:

Ĥψn(x) = Etotalψn(x)

4 Relation between eigenfunctions

We have seen that in general, a quantum mechanical operator has an infinite
number of eigenfunctions (arising from boundary conditions as we will see
later). What is the relation between them and what can we say about each
one individually.

• Eigenfunctions of an operator are orthogonal to one another. Thus,
∫

∞

−∞

ψ∗

i (x) ψ
∗

j (x) dx = 0 i 6= j

• Eigenfunctions of an operator are normalized . Thus,
∫

∞

−∞

ψ∗

i (x) ψj(x) dx = 1 i = j

• In general, eigenfunctions are orthonormal

Keep in mind that physically meaningful wavefunctions are three dimen-
sional. Thus,

∫
∞

−∞

ψ∗

i (x, y, z) ψi(x, y, z) dx dy dz = 1 i = j

For a spherical coordinate representation of a wavefunction ψ(r, θ, φ),
∫

2π

0

∫ π

0

∫
∞

0

ψ∗

i (r, θ, φ) ψi(r, θ, φ) r2 sin(θ) dr dθ dφ = 1 i = j
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