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Introduction
Chemical equilibrium deals with chemical systems at equilibrium: that is,
concentrations (and thus amounts) of chemical species do not change with
time.

Chemical reaction kinetics attempts to describe the way a non-equilibrium
system changes with time in order to achieve chemical equilibrium (of course,
with this is tied thermal, mechanical equilibrium)

To reiterate:
1. thermodynamics tells us whether the free energetcis associated with

a chemical transformation dictates whether the transformation occurs.
2. kinetics tells us how fast (what is the rate) of that transformation towards
an equilibrium state. (what is the concentration of a specie(s) as a function
of time)

I. Reaction Rates

Consider a generic represenation of a chemical reaction:
aA + bB → cC + dD
The Rate of Reaction is defined as:

Rate =
−1

a

d[A]

dt
=

−1

b

d[B]

dt
=

1

c

d[C]

dt
=

1

d

d[D]

dt
(1)

Experimentally, the Rate of reaction is treated as follows, thus introduc-
ing the concept of the rate constant, k :

Rate = kΠN
i=1 [i]γi

i (2)

definition of variables:
k = rate constant (sometimes called rate coefficient; can be determined

experimentally; can be estimated theoretically–transition state theory)
[i] = concentration of REACTANT species ”i”
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γi = Reaction order of REACTANT species ”i”
p = Σi γi = overall reaction order
NOTE: at this point, the experimental rate equation is written with

species reaction orders that have NO inherent relation to the stoichiometric
coefficients (a,b,c,d) of the chemical reaction of interest!

1 Elementary Reactions

Consider the following overall reaction:
2N2O5 → 4NO2 + O2

The predicted rate law for this reaction (which happens to be in good agree-
ment with experiment) is:

rate =
k1k2

k−1 + 2k2
[N2O5] = keffective [N2O5] (3)

We observe that the overall rate is NOT second order in [N2O5] as one
might quickly jump to conclude. This is because the mechanism under-
lying this overall chemical transformation is complex; that is, there are
several mechanistic steps involved, with certain intermediates involved as
well. We will say more about reaction mechanisms later. For the present,
we mention them in order to emphasize that the stoichiometric coefficients
of the chemical reaction are tied to the reaction order only for elementary
reactions or reaction steps.

2 Integrated Rate Equations and Analysis for El-

ementary Reactions

I. Zero’th Order Reactions (rare)

The rate of reaction is independent of instantaneous reactant concentra-
tion:

A → products

Rate = k = −d[A]

dt
(4)

[A]t = [A]o − kt (5)

The rate constant, k, has units of (concentration/time). The reaction half-
life, t1/2, is the time necessary for one-half of the reactant species to be
consumed is given by:
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t1/2 =
[A]o
2k

(6)

The units of the rate constant k are in concentration per unit of time (
[moles/liter]/sec ).

II. First-Order Reactions

A → products

The reaction rate for a First-Order reaction is proportional to the first

power of the concentration of the reacting species (order=1).

Rate = k [A]1 = −d[A]

dt
(7)

Integrating this straightforwardly, keeping in mind the initial concentra-

tion of A, [A]o is defined (boundary condition for solving differential equa-
tion):

[A]t = [A]o e−kt (8)

In order to determine if a reaction is First order, using experimental
data, we can manipulate the exponential form just determined into a linear
form to make analysis easier.

Taking the natural logarith (natural log) of both sides to arrive at:

ln [A]t = ln [A]o − kt (9)
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The half-life of such a reaction is given by:

t1/2 =
ln2

k
=

0.693

k
(10)

Using the last relationship, one can reciprocally determine the rate con-
stant knowing the half-life of a reaction or other physicochemical process.

Examples:

• 1. decay of radioactive nuclei (carbon dating)

• 2. fluorescence decay of electronically excited molecules

• 3. chemical reactions (as we’ll see later)

• 4. others

III. Second Order Reactions

The rate of a second-order reaction is overall 2, and depends on either a single
reactant species (to order 2) or on two different reactant species, each with
order 1 dependence (recall the definition of reaction order as the sum of the
individual species reaction orders). Let’s consider the two cases individually.

a). Second order in one reactant

2A → products
(A+A → products )

Rate = k [A]2 = −1

2

d[A]

dt
(11)

Performing the integration:

1

[A]
=

1

[A]o
+ 2kt (12)
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Be careful of the factor of 1
2 often easily overlooked in the treatment of

this reaction.

The half-life for this reaction is given by:

t 1

2

=
1

k[A]o
(13)

Second order reaction in two reactant species

If the reaction is given by:
A + B → products

the reaction rate is given by:

Rate = k [A]1 [B]1 = −d[A]

dt
(14)

We obtain for the integrated rate equation:

kt =
1

([A]o − [B]o)
ln

[A] [B]o
[A]o [B]

[A]o 6= [B]o (15)

We can now consider two special cases:

• [A]o = [B]o
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• Because of the one-to-one stoichiometry, we can say for all time [A]=[B]

• The integrated rate law is like that for 2nd order in one component
(see above)

• [B]o <<< [A]o : we can consider reactant A in excess (it essentially
remains constant)

[B] = [B]oe
−k′t (16)

• k′ = k[A]o

• This is pseudo-1st order (species B undergoing transformation in a
”sea of A”)

3 Determining Reaction Orders

In order to determine reaction orders,we can play some games with initial
concentrations, excesses of species, etc. In order to do this, we need to
measure concentrations (or amounts) as a function of time.

• Quench the reaction, measure concentrations

• For gases, measure pressure versus time

• Spectroscopically follow reactant/product species

3.1 Analyzing data

3.1.1 Reactions with 1 reactant

A → products

a. Plot or analyze the time behavior of the concentration;

A vs. time

• ln[A] vs. time

• 1/[A] vs. time

• plot to see which dependence give ”straight” line

b. Half-life method: measure the relation between t 1

2

and [A]o
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• 1st order → t 1

2

∝ [A]0o

• 2nd order → t 1

2

∝ [A]−1
o

c. Multiple Life-times (t 3

4

and t 1

2

) (at t 3

4

, [A] = 0.25[A]o)

• 1st order → t 3

4

= 2ln2
k →

t 3
4

t 1
2

= 2

• 2nd order → t 3

4

= 3
[A]ok →

t 3
4

t 1
2

= 3

3.1.2 Reactions with more than 1 reactant

A + B + C → products

a. Initial Rate Method (vary initial concentrations of a species and
measure initial rates)

• For [A]o
∆[A]
∆t |t=0 = Ro ≡ k[A]αo [B]βo [C]γo

• For [A]
′

o
∆[A]

′

∆t |t=0 = R
′

o ≡ k[A]
′α
o [B]βo [C]γo

• Experimentally determine: Ro

R′

o

=
(

[A]o
[A]′o

)α

• Consider the following cases for the scenario: [A]
′

o = 0.5[A]o
if Ro

R′

o

= 1 → α = 0

if Ro

R′

o

=
√

2 → α = 1
2

if Ro

R′

o

= 2 → α = 1

if Ro

R′

o

= 4 → α = 2

b. Flooding or Isolation

• Let [A]o << [B]o, [C]o (flood system with B and C)

• Then [B] ≡ [B]o and [C] ≡ [C]o

• Thus

−d[A]

dt
≡ k

′

[A]α (17)

• k′ = k[B]βo [C]γo

• the reaction is made to be pseudo-α order with one reactant
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