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1 Introduction

In this discusison, we explore aspects of describing how systems change in
time from an initial state to a final state. Effectively, we are interested in
that non-equilibrium regime during which system properties change.

System properties change in response to perturbations from equilibrium
(external forces)

System properties that can change include: 1). matter(diffusion), 2).
energy (temperature), 3). momentum (viscosity)

2 Fluxes

Quantity transferred through a given area per unit time

Flux occurs because of a spatial and time-varying gradient of an associated
system property.
Flux occurs in opposition to spatial gradient

Flux continues until the gradient is nullified and equilibrium is reached.
Flux continues until external force stop

The most general relation for a flux in the x-direction is:

Jx = −α
d(property)

dx
(1)
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This relates a flux to a gradient of a property (not specifically defined
to be anyting at this point)

Flux is a linear response; this treatment assumes a perturbative dis-
placement from equilibrium.

Figure 35.1 from Engel and Reid

Once the barrier is removed, particles will ”flow” from regions of high con-
centration (probability) to regions of low concentration(probability). The
particle density is the variable Ñ .

A natural question is: What is the time-dependence of the con-
centration profile?

3 Mass Transport: Fick’s Laws and Diffusion

Here we derive Fick’s First Law of Diffusion (not really a law; just a mass
balance).

Consider the following spatial density profile for an ideal gas (we only con-
sider diffusion in one dimension, along the x-direction).
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The flux plane is located at x = 0; this is the plane through which
we will derive the flux. Two other planes at −λ and +λ are also shown.
The λ are located at distances from the flux plane that correspond to the
mean free path of the gas particles.
First, we need to determine the net flux at the flux plane (x=0). The net
flux is:

Jnetflux = J
−λ − J+λ (2)

Thus, we need to find the expression for the flux at a plane. For the x-
direction, this is given by:

Jx = Ñ

∞
∫

0

vxf(vx)dvx (3)

Substituting the Maxwell distribution of speeds (discussed in previous
lectures):

Jx = Ñ

(

kT

2πm

)
1

2

=
Ñ

4
vave (4)

Now, we need to find the local density at the planes, J
−λ and J+λ .

These densities are Ñ(λ) and Ñ(−λ) (the two planes on either side of the
flux plane drawn above).

Taylor expand the number density about x=0 (the location of the flux
plane:

Ñ(λ) = Ñ(x = 0) + λ
dÑ

dx
|x=0 (5)

Ñ(−λ) = Ñ(x = 0) − λ
dÑ

dx
|x=0 (6)
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We can now determine the net flux as follows:

Jnetflux = J
−λ − J+λ (7)

Jnetflux = −1

2
vaveλ

(

dÑ

dx

)

x=0

(8)

This is nominally the kinetic theory result for the diffusion constant!. com-
paring the last equation to the general form for a flux, we see that the
diffusion constant from kinetic theory is dependent on the average speed
and the mean free path! these are both results obtained from a knowledge
of the Maxwell distrubtion of speeds.

An alternate form takes into account that fact that not all particles leav-
ing the plane at −λ will arrive at the flux plane; orientatinlly averaging
the mean free path, one finds that roughly one-third of the particles do not
reach the flux plane, leaving 2/3 of the above result. This leaves:

Jnetflux = −1

3
vaveλ

(

dÑ

dx

)

x=0

(9)

The diffusion constant is now:

D =
1

3
vaveλ (10)

This is the result of Fick’s First Law that we are looking for:

Jx = −D

(

dÑ

dx

)

x=0

(11)
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4 Fick’s Second Law

In the last section, we discussed the relation between flux and the spatial
gradient of concentration (in one dimension). We know that the flux leads
to an equiilibration over time; thus, the density profile is not only varying
in the spatial dimension, but also in time. That is, Ñ = Ñ(x, t). We know
turn to determining the time evolution of the densitiy profile. This gives
us a sense of how matter will disperse in space and time.

If we consider the following Figure,

we can write a mass balance for the volume between x and x + dx as
follows:

δN

δt
= In − Out (12)

δN

δt
= (A)(Jx) − (A)(Jx+dx) (13)

δN

δt
= A(Jx − Jx+dx) (14)

(15)
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Now, we can determine the expression for concentration changing with
time by dividing both sides by Volume, V as:

δ(N
V

)

δt
=

A

V
(Jx − Jx+dx) (16)

δÑ

δt
=

A

V
(Jx − Jx+dx) (17)

(18)

We also see from the figure that A
V

= 1
δx

. Thus:

δÑ

δt
=

(Jx − Jx+dx)

δx
(19)

δÑ

δt
= −δJ

δx
(20)

(21)

In the limit of an infinitesimal width dx, we obtain:

dÑ

dt
= −dJ

dx
(22)

(23)

Substuting Ficks’s first law for the flux, J, yields finally, Fick’s Second
Law (Diffusion Equation):

dÑ(x, t)

dt
= D

d2Ñ(x, t)

dx2
(24)

From this we see that the time dependence of the concentration profile de-
pends on the second derivative, and effectively, the curvature of the con-
centration gradient profile. The more severe the curvature, the faster
the rate of change.
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This second order differential equation can be solved in a variety of ways
using the appropriate boundary conditions. In this case, one needs to
specify things like the initial concentration profile in order to determine a
specific solution. For the present, we present a solution for the case where
one starts with No particles confined to a plane of surface A at time
t=0:

Ñ(x, t) =
No

2A
√

πDt
e

−x
2

4Dt (25)

Figure 35.5 in Engel and Reid shows representative profiles of the particle
density for various times. For small times, the curvature is large; thus, more
rapid relaxation of the concentration profile towards it flat profile at equili-
bration (infinitely long times).
Probabilistic Interpretation of the Solution to the Diffusion Equa-
tion

We can also consider the solution of the diffusion equation as a represe-
nation of the probability of finding a particle at a position x at a particular
time, t; the initial position is x = 0 by construction.
As such, we can use this probability distribution to determine an aver-
age value; in this case, we are interested in the root mean square (rms)
displacement of the particle. This metric of average dynamics intuitively
should depend on the diffusion constant and time. To derive this, we apply
the usual approach for averages:

xrms =
〈

x2
〉

1

2 =





A

No

∞
∫

−∞

x2Ñ(x, t)dx





1

2

(26)

xrms =
√

2Dt (27)

Thus, the roo-mean-square displacment does indeed depend on the diffusion
constant and time (both to the power one-half).

For diffusion in 3-D, the equivalent expression for the scalar distance of
displacement rrms is simply:
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rrms =
√

6Dt (28)

5 Diffusion as a Random Walk

We end by a discussion of the diffusion as a random process, or random
walk. This suggests one can approach the problem from a statistical per-
spective, invoking the formalism of probability distributions, large num-
bers, and statistical averages. (Aside: the process we’ll consider is actually
stochastic and such processes are of immense importance in the workings
and understanding of the securities markets that are so important to our
daily lives).

A random walk process is generally defined as one for which there is no cor-
relation between sequential steps; i.e., there is no memeory. Based on the
discussion of diffusion, and the motion of a particle in between collisions,
after which there is no memory of the collision, fits this random walk process.

Let’s consider a one-dimensional random walk along the x-dimension. Here
are the rules:
1. take one step in either positive or negative x-direction 2. there is no bias
to which direction one goes from the current position
The question we pose:

What is the probability of reaching position X (equivalently
having travelled a distance X) from the origin after having taken
∆ total steps?

Some definitions: ∆ is the total number of steps
∆− is the number of steps in the negative x direction
∆+ is the number of steps in the positive x direction
X = ∆+ − ∆−

∆ = ∆+ + ∆−

The weight of position X is essentially the number of ways of reaching
X given ∆ total steps with ∆ equal to the sum of the positive and
negative steps, and X being the difference.

Without the constraint of having to arrive at X given the total number of
steps, the total number of ways of executing ∆ steps, each with only 2 pos-
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sibilities, is 2∆.

The probability of reaching position X then, is simply the ratio:

P (X) =
WX

Wtotal

(29)

P (X) =
WX

2∆
(30)

What is WX? (Recall: The number of ways of arriving at X given a total of
∆ steps)

WX =
∆!

(

∆+X
2

)

!
(

∆−X
2

)

!
(31)

The probabiilty is then:

P (X) ∝ e
−X

2

2∆ (32)

Looking back to the diffusion equation solution, we see similarities; the par-
ticle density, Ñ is also proportional to a Gaussian distribution function.
Equating the two results, we can draw some analogies.

x2

4Dt
=

X2

2∆
(33)

Note how the question for the random walk example was posed;
what is the probability of arriving at X after a total number of
steps. The total number of steps can be plausibly reasoned to be
some total time, based upon some characteristic time per step!
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Ascribe realistic interpretation for ∆ and X:

∆ =
t

τ
(34)

x = (X)(xo) (35)

These definitions give for the diffusion constant:

D =
x2

o

2τ
Einstein − Smoluchowski Equation (36)

What is the difference between the random walk timestep, τ for benzene
and argon?
What is obtained for the diffusion constant if the mean free path and aver-
age time between collisions (derive from kinetic theory) are applied in the
Einstein-Smoluchoswki expression for the diffusion constant?
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