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I. Hartree-Fock with Antisymmetrized Wavefunctions

Recall the earlier discussion of the Hartree-Fock self-consistent method. For
the purposes of that introduction, we used trial wavefunctions that were
simple products of single-electron orbitals. We did not account for antisym-
metry and Pauli exclusion. Here, we will briefly formulate the Hartree-Fock
method with anti-symmetric wavefunctions. The results of this analysis will
give rise to the already determined orbital energies and electron-electron
repulsion terms (Coulomb integral), as well as a new term arising from the
antisymmetric nature of the wavefunction—exchange integral. Keep in mind
that the following does still not consider explicitly effects of electron corre-
lation (though, depending on the source, the exchange term is thought to
contribute some amount to correlation).

The N-electron Slater determinantal wavefunction form, recall, is:

Ψ(r1, σ1, r2, σ2, ..., rN , σN ) =
1√
N !
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For closed shell systems each spatial orbital is occupied by 2 electrons (of
opposite spin). Thus we require a single Slater determinant:

Ψ(r1, σ1, r2, σ2, ..., r2N , σ2N ) =

1
√

(2N)!
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The Hamiltonian operating only on spatial coordinates in atomic units
is:

Ĥ = −1

2

2N
∑

j=1

∇2
j −

2N
∑

j=1

Z

rj

+
2N
∑

i=1

2N
∑

j>i

1

rij

The Hartree-Fock total energies,for this closed-shell configuration much
like we have seen earlier are:

E = 2
N

∑

j=1

Ij +
N

∑

i=1

N
∑

j=1

(2Jij − Kij)

The various terms in the energy expression are:

Ij =

∫

φ∗

j(rj)

[

−
∇2

j

2
− Z

rj

]

φj(rj)drj

Jij =

∫ ∫

φ∗

i (r1)φ
∗

j (r2)
1

r12
φi(r1)φj(r2)dr1dr2 Coulomb Integral

Kij =

∫ ∫

φ∗

i (r1)φ
∗

j (r2)
1

r12
φi(r2)φj(r1)dr1dr2 Exchange Integral i 6= j

NOTE:

In the definitions of the various one- and two-electron integrals listed im-
mediately above, the summations are effectively over orbitals. These can be
written in terms of summations over electrons with minor modifications in
the leading multiplicative factors (see Szabo and Ostlund for further details).

Let’s consider the meaning of the Coulomb and Exchange terms we have
discussed just now. The coulomb integral can be rearranged as:

∫ ∫

φ2
i (r1)

1

r12
φ2

j(r2)dr1dr2

The square of the wavefunction is the probability of finding an electron at
a given point in space. So this term is the energy of the Coulombic interac-
tion between an electron in orbital i with an electron in orbital j. For this
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reason, this integral is called the Coulomb Integral. Because the Coulomb
potential is always positive for like charges, and the square of the wavefunc-
tion is always positive, this term contributes a positive energy to the toatl
energy. This is a destabilizing energy contribution (arising from unfavorable
repulsion).

The Exchange integral has no immediate classical interpretation. The name
arises from the fact that the 2 electrons exchange their positions from the
left to the right of the integrand, and in this sense the integral is connected
to the Pauli principle.

The probability density for two electrons is significantly different in the
case of an antisymmetrized Slater Determinant than in the simple Hartree
product. The total density is not a simple product of each orbital density.
The Coulomb integral expression suggests that the total probability is of
a product-like nature. But since we have incorporated the antisymmetric
nature of electronic wavefunctions via the Slater Determinantal form, the
effect is apparane tin the form of the exchange integrals which arise nat-
urally The total density is not a simple product of each orbital density.
The Coulomb integral expression suggests that the total probability is of
a product-like nature. But since we have incorporated the antisymmetric
nature of electronic wavefunctions via the Slater Determinantal form, the ef-
fect is apparanet in the form of the exchange integrals which arise naturally.
The exchange integrals ”correct” the Coulomb integrals to take into account
the antisymmetry of the wavefunction. It is easy to show that electrons of
the same spin are more ”correlated” in the Slater Determinantal form than
in the Hartree Product form, so the Coulomb integrals should exaggerate
the Coulomb repulsion of the electrons since the purely Coulomb integrals
represent a probability that is of the form of a Hartree product wavefunc-
tion. Keep in mind that the ”correlation” we introduce here is still not
the total correlation between electrons, as the effect fundamentally arises
from the indistinguishablity of electrons (as embodied in the antisymetrized
wavefunctions) and has nothing to do with electron correlation. This is a
subtle matter of semantics one should bear in mind.

The Hartree-Fock Method with Antisymmetric Wavefunctions

The variational principle yields the Hartree-Fock equation for each orbital:

F̂iφi = εiφi

F̂i = f̂i +
N

∑

j=1

(

2Ĵj − K̂j

)

Fock Operator
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The various secondary operators embedded in the Fock operator are defined
as:

f̂i = −∇2
i

2
− Z

ri

Ĵj(r1)φi(r1) = φi(r1)

∫

φ∗

j (r2)
1

r12
φj(r2)dr2

K̂j(r1)φi(r1) = φj(r1)

∫

φ∗

j(r2)
1

r12
φi(r2)dr2

With these operators defined, one follows the protocol introduced earlier to
solve the individual orbital Fock equations to obtain self-consistently the
orbitals and orbital energies.

To summarize:

• Coulomb integrals describe repulsions between pairs of electrons. Al-
ways positive: integrands are positive everywhere (repulsion!)

• Exchange integrals arise through exchange of indistinguishable elec-
trons. Positive, but have positive and negative intgrand contributions.

• Orbital energies are generally associated with ionization potentials
(Koopman’s Theorem).

Splitting of Hydrogen atom orbital energies due to many-electron shielding

effects.

Splitting of Hydrogen Atom energy levels in Many-Electron Atoms
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• Orbital energies are non-degenerate

• Relative orbital energetics for many-electron atoms are determined
through interplay of one-electron kinetic and nuclear-electron interac-
tions, electron-electron repulsions, and exchange effects. Thus, relative
stabilities of many-electron atom orbitals are defined in a non-intuitive
manner

• Afbau principle guides filling of orbitals

Angular Momentum of Many-Electron Atoms

Energies for various orbitals of many-electron atoms are dependent on spin

and orbital angular momentum.

For lighter atoms (Z < 30 − 40), spin-orbit coupling is minimal. A scheme
named the Russell-Saunders coupling scheme can be applied to combine elec-
tron orbital and spin angular momenta in order to arrive at a description of
atomic states.

In the R-S scheme, spin and orbital angular momenta add as vectors.
Thus, their components add up in parallel. Consider:
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L =
∑

i

li

Lz =
∑

i

lzi
=

∑

i

mli ≡ ML

ML = −L,−L + 1, ..., L − 1, L (2L + 1 possible values)

L = 0, 1, 2, .... S, P, D, ...... states

For spins:

S =
∑

i

si

Sz =
∑

i

szi
=

∑

i

msi
≡ MS (2S + 1 possible values)

2S + 1 = Spin Multiplicity

The total angular momentum is :
J = L + S

Jz = Lz + Sz = (ML + MS) ≡ MJ

J = L + S,L + S − 1, ..., |L − S|

Atomic states for many-electron atoms are characterized by the term symbol:

2S+1LJ

Table 1. Names for the leading superscripts of atomic term symbols.

Multiplicity, 2S+1 Name

1 Singlet

2 Doublet

3 Triplet

Table 2. Letter conversions for atomic term symbols.
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L Letter

0 S

1 P

2 D

3 F

4 G

5 H

In the R-S scheme, then, the good quantum numbers are the L and S (the
Hamiltonian commutes with these operators). In the spin-orbit coupling
scheme, the J operator commutes with the Hamiltonian.

Determining Atomic Terms

A. Russel-Saunders Coupling.
Let’s consider what terms arise for a particular electronic configuration of
an atom. We will also see what microstates are associated with each term.
In the R-S scheme, each term will have degenerate microstates. In the spin-
orbit coupling scheme, these states will split (j-j coupling scheme).

A1. Helium 1s2 Configuration

Ground state of Helium. 2 electrons in 1s orbital; Pauli exclusion dictates
opposite spin.

Addition of lz as sum of ml values gives: ML = ml(electron1)+ml(electron2) =
0 + 0 = 0.
Thus, L = 0.

Addition of sz as sum of ms values gives: MS = ms(electron1)+ms(electron2) =
1
2 + −1

2 = 0
Thus, S=0.

Spin Multiplicity = 1 Total angular momentum, J = L + S = 0.

So, the term is: 1S0, a singlet S.

A2. Helium Excited State 1s12s1 Configuration

This case is slightly different. The configuration includes two orbitals, the
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1s and 2s.

1. First compute ML: ML = mle−
1

+ mle−
2

= 0 + 0 = 0. Thus, L=0 and we

will have ”S” terms.
2. Second compute MS : MS = mse−

1

+ mse−
2

= 1/2 + 1/2 = 1 or

MS = mse−
1

+ mse−
2

= 1/2 − 1/2 = 0

2a. The number of microstates is then (2S + 1)(2L + 1) = 3 or 1 depending
on the spin pairing. Thus, in tabular format:

Table 3. Microstates for Helium 1s12s1.

ML MS

1 0 -1

0 (0+, 0+) (0+, 0+),(0+, 0+) (0+, 0+)

The terms are then both ”S” terms since L=0. For ”S”=1, the term is: 3S1

(multiplicity of 3 and 3 degenerate states in R-S scheme).
For ”S”=0, the term is: 1S0.

A3. Carbon Atom Ground State: 1s22s22p2

In this case, we have two electrons in the valence shell that contribute to
coupling. The table for constructing the terms goes as follows:

Table 4. Microstates for Ground State Carbon 1s12s22p2.
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ML MS

1 0 -1

2 (1+, 1−)

1 (0+, 1+) (1+, 0−),(0+, 1−) (0−, 1−)

0 (1+,−1+) (1+,−1−),(−1+, 1−), (0+, 0−) (1−,−1−)

-1 (0+,−1+) (−1+, 0−),(0+,−1−) (0−,−1−)

-2 (−1+,−1−)

Now let’s analyze the table. First, the values of L can be 2, 1, or 0. The
values of S can be 1 or 0.

• L=2; only S=0 is allowed. J=L+S=2 (J=2 only). Thus, (2L+1)(2S+1)
= 5 microstates. These are along the center column of the table. The
term symbol is thus 1D2. The degeneracy is 2J+1 = 5.

• L=1; S=1. J=2,1,0. Thus, (2L+1)(2S+1) = 9 microstates. Term
symbols. 3P2,

3 P1,
3 P0.

• L=0; S=0. J=0. Term symbol: 1S0.

Splitting of Carbon atom Ground State orbital energies due to many-electron

effects.

Splitting of Carbon Atom energy levels in Many-Electron Atoms
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Atomic States Have Different Energies: Consequence of Coulomb

Repulsion and Exchange!

In this short discussion, we will see how the interplay between Coulomb re-
pulsion and particle exchange (recall the associated integrals in the Hartree-
Fock protocol) leads to splitting of atomic states into different (degenerate)
energy levels. This is an interesting consequence.
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