Hydrogn Atom,Probability Functions

22nd April 2008

I. Hydrogen Atom: Radial Distribution Functions

In this section we consider the question of the most probable distance from the nucleus at which the electron of a hydrogen-like atom is to be found. More precisely, what is the probability of finding the electron at a particular value of r, regardless of the values of θ and ϕ. That is, we are interested in finding the electron in a spherical shell of width $d r$ at a radius r from the nucleus. This probablility is given, for a 1s orbital, by:

$$
\begin{align*}
P(r) d r & =\frac{1}{\pi a_{o}^{3}} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta r^{2} e^{\frac{-2 r}{a_{o}}} d r \tag{1}\\
& =\frac{4}{a_{o}^{3}} r^{2} e^{\frac{-2 r}{a_{o}}} d r \tag{2}
\end{align*}
$$

For an s-type orbital, the integration over the spherical angles leads effectively to an averaging over these degrees of freedom. This is meaningful for spherically symmetric functions, such as the s-orbitals; however, since there is angular dependence on the radial probability density for orbitals for $l / g t 0$, the radial distribution function, $P(r) d r$ is defined as:

$$
\begin{equation*}
P(r) d r=r^{2}[R(r)]^{2} d r \tag{3}
\end{equation*}
$$

The form of this function arises from the full hydrogen atom wavefunction as seen by:

$$
\begin{aligned}
\psi^{*} \psi r^{2} \sin \theta d r d \theta d \phi & =R(r)^{*} Y_{l}^{m *}(\theta, \phi) R(r) Y_{l}^{m}(\theta, \phi) r^{2} \sin \theta d r d \theta d(\boldsymbol{\phi}) \\
& =\left[r 2 R(r)^{*} R(r) d r\right] Y_{l}^{m *}(\theta, \phi) Y_{l}^{m}(\theta, \phi) \sin \theta d \theta d \phi(6)
\end{aligned}
$$

Compare Figures 20.10 and 20.9 in Engel and Reid to see the differences in the forms of the above distribution functions. For the radial probability distribution

- Maxima move to larger r as principle quantum number increase.
- Electron is on average further from nucleus; less stronly bound as " n " increases.
- Nodes are present. Much like in the case of the particle in a box, since we are dealing with stationary states of the Schrodinger equation, nodes will be present in the standing wave solutions.
- Subsidiary maxima for hydrogenic orbitals demonstrate the wave nature of such particles. "interference" between waves.
- Number of nodes: For a certain principle quantum number, n, Nodes= $(n-l-1)$ (excluding the one at ∞).
- Number of angular nodes: l

