Quantum Mechanics: Vibration and Rotation of
Molecules

7th April 2008

I. The Rigid Rotor and Q. M. Orbital Angular Momentum

Consider a rotating diatomic molecule, with two masses separated by a
distance r,; the distance is fixed, and the rotation occurs in the absence of
external potentials. The quantum mechanical description begins with the
Hamiltonian:
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This is simply the kinetic energy operator as we have seen in the past for the
particle-in-box and the harmonic oscillator. Now, we can change coordinate
systems from Cartesian to polar spherical coordinates. This goes as:

Cartesian(x,y,z) —  sphericalpolar(r,0, )
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Thus, in spherical polar coordinates, H(r,0, ¢ (r,0,¢) = Ey(r,0,$) be-
comes:
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For the rigid rotor, V=0 (r=r,) and V =00 (r#r,). That is,
the length between masses is constant.
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The Schrodinger equation is now:
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Recall: prg = I, the moment of Inertia of the rotor.
If we assume that ¥ (r,, 60, ¢) is more generally ¢ (r,,0,¢) = BY (0, ¢), the
problem reduces to:
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Solving the Rigid Rotor Problem

Rearranging the previous equation:
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The left-hand side of the previous equation is a function only of # and the
right is a function only of ¢. Thus, we can use separation of variables to
generate a solution:

Thus,



Dividing by ©(0)®(¢) and simplifying:
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Since both sides are functions of different variables, each is equal to a con-
stant, which we’ll let be m?2.
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First consider the ¢ expression:

o D(p) = —m*®
Py (¢) = —m”®(¢)
Solutions are of the general form: ®.(¢) = ALeT™®. As before, the bound-
ary conditions lead to quantization. Since this expression is related to the
z-component of the angular momentum, we can imagine the particle moving
along a circular ring. At the values of ¢ separated by an entire revolution,
the wavefunction has to be the same; i.e. ®(¢p) = ®(¢p + 2m).
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The latter constraint leads to: e = 1. This is valid for values of m:

m=0,+1, 42,43, .....

m is the magnetic quantum number. Thus :

D(p) = Ape™®  m=0,£1,42,+3, ...

Normalization gives:

1 .
(p) = Eem m=0,4+1,42, 43, ...

Now we’ll consider the © function:
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First change variables: = = cosf, ©(f) = P(z), and =42, = d4.
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Since 0 < 6 <7, —1 < x < 1, conveniently. Also, sin%0 = 1—cos?0 = 1 —22.
After some rearrangement and simplification, one obtains the associated
Legendre equation:
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The boundary conditions arise due to the requirement that © is continuous;
this quantizes (:

B=11+1); 1=0,1,2,3,.. (withm = 0,£1,42,43,...)

The energy (eigenvalue) is thus quantized from the definition of f.
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The wavefunctions are the associated Legendre Polynomials, Pllmlz
P"™(x) = P! (cos0)
PY(cosh) =1  P(cosh) = cost
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Putting things togther:
O(6) = A P (cos6)

From normalization:
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The Spherical Harmonics are the eigenfunctions for the 3-D rigid rotor:
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