Quantum Mechanics: Vibration and Rotation of Molecules

7th April 2008

I. The Rigid Rotor and Q. M. Orbital Angular Momentum

Consider a rotating diatomic molecule, with two masses separated by a distance r_{o}; the distance is fixed, and the rotation occurs in the absence of external potentials. The quantum mechanical description begins with the Hamiltonian:

$$
\begin{gathered}
\hat{H}=\hat{K}+V(x, y, z)=\frac{-\hbar^{2}}{2 \mu} \nabla^{2}+0 \\
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
\end{gathered}
$$

This is simply the kinetic energy operator as we have seen in the past for the particle-in-box and the harmonic oscillator. Now, we can change coordinate systems from Cartesian to polar spherical coordinates. This goes as:

$$
\begin{gathered}
\operatorname{Cartesian}(x, y, z) \quad \rightarrow \quad \operatorname{sphericalpolar}(r, \theta, \phi) \\
x=r \sin \theta \cos \phi \\
y=r \sin \theta \sin \phi \\
z=r \cos \theta \\
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}
\end{gathered}
$$

Thus, in spherical polar coordinates, $\hat{H}(r, \theta, \phi) \psi(r, \theta, \phi)=E \psi(r, \theta, \phi)$ becomes:

$$
\left[\frac{-\hbar^{2}}{2 \mu}\left(\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)+V(r, \theta, \phi)\right] \psi(r, \theta, \phi)=E \psi(r, \theta, \phi)
$$

For the rigid rotor, $V=0 \quad\left(r=r_{o}\right) \quad$ and $\quad \mathrm{V}=\infty \quad\left(r \neq r_{o}\right)$. That is, the length between masses is constant.

$$
\psi(r, \theta, \phi) \quad \rightarrow \psi\left(r_{o}, \theta, \phi\right) \quad \rightarrow \quad \frac{\partial}{\partial r} \psi=0
$$

The Schrodinger equation is now:

$$
\left[\frac{-\hbar^{2}}{2 \mu r_{o}^{2}}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)\right] \psi(r, \theta, \phi)=E \psi(r, \theta, \phi)
$$

Recall: $\mu r_{0}^{2}=I$, the moment of Inertia of the rotor.
If we assume that $\psi\left(r_{o}, \theta, \phi\right)$ is more generally $\psi\left(r_{o}, \theta, \phi\right)=B Y(\theta, \phi)$, the problem reduces to:

$$
\left[\frac{-\hbar^{2}}{2 I}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)\right] Y(\theta, \phi)=E Y(\theta, \phi)
$$

Solving the Rigid Rotor Problem

Rearranging the previous equation:

$$
\left[\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{2 I E}{\hbar^{2}} \sin ^{2} \theta\right] Y(\theta, \phi)=-\frac{\partial^{2}}{\partial \phi^{2}} Y(\theta, \phi)
$$

The left-hand side of the previous equation is a function only of θ and the right is a function only of ϕ. Thus, we can use separation of variables to generate a solution:

$$
Y(\theta, \phi)=\Theta(\theta) \Phi(\phi) \quad \rightarrow \quad \text { Define }: \quad \beta \equiv \frac{2 I E}{\hbar^{2}}
$$

Thus,

$$
\left[\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{2 I E}{\hbar^{2}} \sin ^{2} \theta\right] \Theta(\theta) \Phi(\phi)=-\frac{\partial^{2}}{\partial \phi^{2}} \Theta(\theta) \Phi(\phi)
$$

Dividing by $\Theta(\theta) \Phi(\phi)$ and simplifying:

$$
\left[\frac{\sin \theta}{\Theta(\theta)} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right) \Theta(\theta)+\beta \sin ^{2} \theta\right]=-\frac{1}{\Phi(\phi)} \frac{\partial^{2}}{\partial \phi^{2}} \Phi(\phi)
$$

Since both sides are functions of different variables, each is equal to a constant, which we'll let be m^{2}.

$$
\begin{gathered}
\frac{1}{\Phi(\phi)} \frac{\partial^{2}}{\partial \phi^{2}} \Phi(\phi)=-m^{2} \\
\frac{\sin \theta}{\Theta(\theta)} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right) \Theta(\theta)+\beta \sin ^{2} \theta=m^{2}
\end{gathered}
$$

First consider the ϕ expression:

$$
\frac{\partial^{2}}{\partial \phi^{2}} \Phi(\phi)=-m^{2} \Phi(\phi)
$$

Solutions are of the general form: $\Phi_{ \pm}(\phi)=A_{ \pm} e^{ \pm i m \phi}$. As before, the boundary conditions lead to quantization. Since this expression is related to the z-component of the angular momentum, we can imagine the particle moving along a circular ring. At the values of ϕ separated by an entire revolution, the wavefunction has to be the same; i.e. $\Phi(\phi)=\Phi(\phi+2 \pi)$.

The latter constraint leads to: $e^{ \pm i 2 \pi m}=1$. This is valid for values of m :

$$
m=0, \pm 1, \pm 2, \pm 3, \ldots \ldots
$$

m is the magnetic quantum number. Thus :

$$
\Phi(\phi)=A_{m} e^{i m \phi} \quad m=0, \pm 1, \pm 2, \pm 3, \ldots
$$

Normalization gives:

$$
\Phi(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi} \quad m=0, \pm 1, \pm 2, \pm 3, \ldots
$$

Now we'll consider the Θ function:

$$
\frac{\sin \theta}{\Theta(\theta)} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right) \Theta(\theta)+\beta \sin ^{2} \theta=m^{2}
$$

First change variables: $x=\cos \theta, \Theta(\theta)=P(x)$, and $\frac{d x}{-\sin \theta}=d \theta$.
Since $0 \leq \theta \leq \pi,-1 \leq x \leq 1$, conveniently. Also, $\sin ^{2} \theta=1-\cos ^{2} \theta=1-x^{2}$. After some rearrangement and simplification, one obtains the associated Legendre equation:

$$
\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}} P(x)-2 x \frac{d}{d x} P(x)+\left[\beta-\frac{m^{2}}{1-x^{2}}\right] P(x)=0
$$

The boundary conditions arise due to the requirement that Θ is continuous; this quantizes β :

$$
\beta=l(l+1) ; \quad l=0,1,2,3, \ldots . \quad \text { (with } m=0, \pm 1, \pm 2, \pm 3, \ldots)
$$

The energy (eigenvalue) is thus quantized from the definition of β.

$$
E=\frac{\hbar^{2}}{2 I} l(l+1) \quad l=0,1,2,3, \ldots
$$

The wavefunctions are the associated Legendre Polynomials, $P_{l}^{|m|}$:

$$
\begin{gathered}
P_{l}^{|m|}(x)=P_{l}^{|m|}(\cos \theta) \\
P_{0}^{0}(\cos \theta)=1 \quad P_{1}^{0}(\cos \theta)=\cos \theta \\
P_{2}^{0}(\cos \theta)=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right) \quad P_{2}^{1}(\cos \theta)=3 \cos \theta \sin \theta
\end{gathered}
$$

Putting things togther:

$$
\Theta(\theta)=A_{l m} P_{l}^{|m|}(\cos \theta)
$$

From normalization:

$$
A_{l m}=\left[\left(\frac{2 l+1}{2}\right) \frac{(l-|m|)!}{(l+|m|)!}\right]^{1 / 2} \leftarrow 1=A_{l m}^{2} \int_{o}^{\pi}\left[P_{l}^{|m|}(\cos \theta)\right]^{2} \sin \theta d \theta
$$

The Spherical Harmonics are the eigenfunctions for the 3-D rigid rotor:
$Y_{l}^{m}=\left[\left(\frac{2 l+1}{4 \pi}\right) \frac{(l-|m|)!}{(l+|m|)!}\right]^{1 / 2} P_{l}^{|m|}(\cos \theta) e^{i m \phi} \quad(\hat{H} Y=E Y) \quad\left(E_{l}=\frac{\hbar^{2}}{2 l} l(l+1)\right)$

