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I. Physical meaning of the Wavefunction

Postulate 1: The wavefunction attempts to describe a quantum me-
chanical entity (photon, electron, x-ray, etc.) through its spatial location
and time dependence, i.e. the wavefunction is in the most general sense
dependent on time and space:

Ψ = Ψ(x, t)

The state of a quantum mechanical system is completely specified by the
wavefunction Ψ(x, t).

The Probability that a particle will be found at time t0 in a spatial
interval of width dx centered about x0 is determined by the wavefunction
as:

P (x0, t0) = Ψ∗(x0, t0)Ψ(x0, t0)dx = |Ψ(x0, t0)|
2dx

Note: Unlike for a classical wave, with a well-defined amplitude (as dis-
cussed earlier), the Ψ(x, t) amplitude is not ascribed a meaning.

Note: Since the postulate of the probability is defined through the use of
a complex conjugate, Ψ∗, it is accepted that the wavefunction is a complex-
valued entity.

Note: Since the wavefunction is squared to obtain the probability, the
wavefunction itself can be complex and/or negative. This still leaves a prob-
ability of zero to one.

Since the probability of a particle being somewhere in space is unity, the
integration of the wavefunction over all space leads to a probability of 1.
That is, the wavefunction is normalized:
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∫

∞

−∞

Ψ∗(x, t)Ψ(x, t)dx = 1

In order for Ψ(x, t) to represent a viable physical state, certain condi-
tions are required:

1. The wavefunction must be a single-valued function of the spatial
coordinates. (single probability for being in a given spatial interval)

2. The first derivative of the wavefunction must be continuous so that
the second derivative exists in order to satisfiy the Schrödinger equation.

3. The wavefunction cannot have an infinite amplitude over a finite in-
terval. This would preclude normalization over the interval.

II. Experimental Observables Correspond to Quantum Mechani-
cal Operators

Postulate 2: For every measurable property of the system in classical
mechanics such as position, momentum, and energy, there exists a corre-
sponding operator in quantum mechanics. An experiment in the lab to
measure a value for such an observable is simulated in theory by operating
on the wavefunction of the system with the corresponding operator.

Note: Quantum mechanical operators are clasified as Hermitian oper-
ators as they are analogs of Hermitian matrices, that are defined as having
only real eigenvalues.

Table 14.1 (Engel and Reid): list of classical observables and q.m. oper-
ator.

Observable Operator Symbol of Operator

Momentum −ih̄ ∂
∂x p̂x

Kinetic Energy −h̄2

2m
∂2

∂x2 Êkinetic

Position x x̂

Potential Energy
Total Energy

Note: operators act on a wavefunction from the left, and the order of
operations is important (much as in the case of multiplying by matrices–
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commutativity is important).

III. Individual Measurements

Postulate 3: For a single measurement of an observable corresponding
to a quantum mechanical operator, only values that are eigenvalues of the
operator will be measured.

If measuring energy: one obtains eigenvalues of the time-independent
Schrödinger equation:

ĤΨn(x, t) = EnΨn(x, t)

Note: The total wavefunction defining a given state of a particle need
not be an eigenfunction of the operator (but one can expand the wavefunc-
tion in terms of the eigenfunctions of the operator as a complete basis).

IV. Expectation Values and Collapse of the Wavefunction

Postulate 4: The average, or expectation, value of an observable cor-
responding to a quantum mechanical operator is given by:

< a >=

∫

∞

−∞
Ψ∗(x, t)ÂΨ(x, t)dx

∫

∞

−∞
Ψ∗(x, t)Ψ(x, t)dx

This is a general form for the expectation value expression. If the wave-
function is normalized, then the denominator is identically 1 (this is assumed
to be the case since every valid wavefunction must be normalized).

Consider the following cases:

A. The wavefunction represents an eigenfuntion of the operator of inter-
est. The expectation value of a measurable is:

< a >=

∫

∞

−∞

φ∗j (x, t)Âφj(x, t)dx = aj

∫

∞

−∞

φ∗j(x, t)φj(x, t)dx

where φj(x, t) is an eigenfunction of the operator Â.

B. Now consider that the wavefunction itself is not an eigenfunction
of the operator Â. However, since the wavefunction belongs to the space of
functions that are eigenfunctions of the operator, we can construct (expand)
the wavefunction from the basis of eigenfunctions of Â. Thus:
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Ψ(x, t) =
∑

bnφn(x, t)

where the φn(x, t) are eigenfunctions of the operator Â. So let’s consider
the

< a >=

∫

∞

−∞

φ∗j (x, t)Âφj(x, t)dx

=

∫

∞

−∞

[

∞
∑

m=1

b∗mφ
∗

m(x, t)

] [

∞
∑

n=1

bnanφn(x, t)

]

dx

=

∫

∞

−∞

∞
∑

n=1

∞
∑

m=1

b∗mφ
∗

m(x, t)bnanφn(x, t)dx

=
∞
∑

n=1

∞
∑

m=1

∫

∞

−∞

b∗mφ
∗

m(x, t)bnanφn(x, t)dx

The only terms that survive are the m=n terms (orthogonality of
eigenfunctions!). Thus,

< a >=
∞
∑

n=1

b∗nbnan

=
∞
∑

n=1

|bn|
2
an

Note: We see that the average value of the observable is a weighted
average of the possible eigenvalues (i.e., possible measurement outcomes).
The weighting factor is the square of the expansion coefficient, bn for the
n’th eigenfunction with eigenvalue an.

Thus, the expansion coefficients, bn represent the degree to which the
full wavefunction possesses the character of the eigenfunction φn. By anol-
ogy to vector space, the coefficients can be thought of as projections of
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the wavefunction on to the basis functions (i.e., the eigenfunctions of the
operator).

Note: Individual measurements of a quantum mechanical system have
multiple outcomes. We cannot know which of these will be observed a pri-
ori. We only know in a probabilistic way the relative opportunities to
realize any particular value. Furthermore, the probabilities become mean-
ingful in the limit of large numbers of measurements.

Note: identically prepared quantum systems can have different out-
comes with regard to measure observables. (super position of states)

Note: Initial measurement of a quantum mechanical system is proba-
bilistic. Subsequent measurements will yield the same value of the observ-
able. This is a transition from a probabilistic to a deterministic outcome.
Collapse of the wavefunction.

V. Time Evolution
Postulate 5: The time-dependent Schrödinger equation governs the

time evolution of a quantum mechanical system:

ĤΨ(x, t) = ih̄
∂Ψ(x, t)

∂t

Note: The Hamiltonian operator Ĥ contains the kinetic and potential op-
erators (as discussed above). This equation reflects the deterministic (New-
tonian) nature of particles/waves. It appears to be in contrast to Postulate
4 (many observations lead to different measured observables, each weighted
differently, i.e., a probabilistic view of the particle/wave). The reconciliation
is in the fact that Postulate 4 pertains to the outcomes of measurements at
a specific instant in time. Postulate 5 allows us to propagate the wave-
function in time (we propagate a probabilistic entity). Then, at some future
time, if we make another measurement, we are again faced with the impli-
cations of Postulate 4.

Note: In dealing stationary quantum mechanical states, we do not need
to have an explicit knowledge of the time dependent wavefunction, particu-
larly if the operator of interest is independent of time. Consider:

Â(x)Ψn(x, t) = anΨn(x, t)

Recalling that the time dependent wavefunction can be written as the
product of time-independent and time-dependent components:

Ψn(x, t) = ψn(x)e−i(En/h̄)t
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Thus:

Â(x)ψn(x)e−i(En/h̄)t = e−i(En/h̄)tÂ(x)ψn(x) = e−i(En/h̄)tanψn(x)

Â(x)ψn(x) = anψn(x)

Thus, for time-independent operators, the eigenvalue equations for ψn(x)
are all we need to consider.
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