[Numbers without decimal points are to be considered infinitely precise. Show reasonable significant figures and proper units. In particular, use generally accepted units for various quantities.]

1. (10 points) The reaction $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ is second order with a temperature-dependent rate constant, k :

$\mathrm{T}(\mathrm{K})$	203.8	222.4	272.2	307.2
$\mathrm{k}\left(\mathrm{cm}^{3}\right.$ molecule $\left.^{-1} \mathrm{~s}^{-1}\right) / 10^{-15}$	2.67	4.17	11.5	20.9

Using these data only, determine ΔH^{\neq}for this reaction over this range. [An appropriate plot makes the analysis easy.]

The appropriate equation to plot is the following:

$$
\ln \left(\frac{k}{T}\right)=\ln \left(\frac{k_{b}}{h c^{\theta}}\right)+\frac{\Delta S^{\neq}}{R}-\frac{\Delta H^{\neq}}{R} \frac{1}{T}
$$

The slope of this plot is related to the enthalpy of activation.

$$
\Delta H^{\neq}=747.6 \mathrm{~K}\left(8.3144349 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mole}^{-1}\right)
$$

$$
=6.216 \mathrm{~kJ} \mathrm{~mole}^{-1}
$$

[Note that the question specifically asked for the enthalpy of activation. It did NOT ask for the activation energy. The two parameters are not the same.]

2. (4 points) The decay of ${ }^{60} \mathrm{Co}$ to form ${ }^{60} \mathrm{Ni}$ by gamma ray emission has been used by physical chemists, such as former Delaware professor Conrad Trumbore, as a gamma-ray source in the study of radiation damage in biological systems. The half-life for the first-order decay of ${ }^{60} \mathrm{Co}$ is 1.9×10^{3} days. What is the first-order rate constant for this process?
By rearrangement, one finds the relation: $k=\frac{\ln 2}{t_{1 / 2}}=\frac{\ln 2}{1.9 \times 10^{3} d a y}=3.6 \times 10^{-4} \mathrm{day}^{-1}$
This can be expressed in other time units as $1.5 \times 10^{-5} \mathrm{~h}^{-1}=2.5 \times 10^{-7} \mathrm{~min}^{-1}=4.2 \times 10^{-9} \mathrm{~s}^{-1}$.
3. (6 points) Consider a bimolecular solution-phase reaction in water, for which the diffusion coefficient at 298.15 K is $2.25 \times 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. [You may assume that all the reactants diffuse similarly to the water.] Assuming the reacting molecules are roughly 1.0 Angstr $\phi \mathrm{m}$ unit in diameter, estimate the maximum rate constant for the reaction under these conditions.

The question is answered by calculating the maximum rate constant for diffusion control:

$$
\begin{aligned}
k_{D}=4 \pi N_{0} & \left(r_{A}+r_{B}\right)\left(D_{A}+D_{B}\right) \\
& =4 \pi\left(6.02211415 \times 10^{23} \mathrm{~mole}^{-1}\right)\left(1 \times 10^{-10} \mathrm{~m}\right)\left(2 \times 2.25 \times 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right) \\
& =3.41 \times 10^{6} \frac{\mathrm{~m}^{3}}{\text { mole } * \mathrm{~s}}=3.41 \times 10^{9} \frac{\mathrm{dm}^{3}}{\mathrm{~mole} * \mathrm{~s}}
\end{aligned}
$$

