Answer each question in the space provided; use back of page if extra space is needed. Answer questions so the grader can READILY understand your work; only work on the exam sheet will be considered. Write answers, where appropriate, with reasonable numbers of significant figures. You may use only the "Student Handbook," a calculator, and a straight edge.

1. (15 points) a) Two-dimensional self-assembly of organic materials can be conducted at cryogenic temperatures to build an array of useful nanostructures. However, to optimize the process, the diffusion coefficients of organic materials on flat surfaces must be known. Use a 2-D diffusion model to estimate the diffusion coefficient of a C_{60} molecule ("buckyball") on a single crystalline surface of gold in an experiment conducted at T $=50 \mathrm{~K}$. Under these conditions, on average, a single buckyball moves approximately 55 nm in 10 seconds.

$$
\begin{gathered}
r_{r m s}=\sqrt{4 D t} \\
D=\frac{r_{r m s}^{2}}{4 t}=\frac{\left(55 \times 10^{-9} \mathrm{~m}\right)^{2}}{4 \times 10 \mathrm{sec}}=7.56 \times 10^{-17} \frac{\mathrm{~m}^{2}}{\mathrm{sec}}
\end{gathered}
$$

$$
t=\frac{r_{r m s}^{2}}{6 D}=\frac{(0.0254 m)^{2}}{6 \times 8.3 \times 10^{-10} \frac{\mathrm{~m}^{2}}{\sec }}=129550 \mathrm{~s}=36.0 \text { hours }
$$

2. (10 points) A $2-\mathrm{cm}$ diameter spherical ball made of stainless steel type 304 (density $=7.90 \mathrm{~g} / \mathrm{cm}^{3}$) is dropped at $25^{\circ} \mathrm{C}$ through glycerol (viscosity $=10690$ millipoise; density $=1.2613 \mathrm{~g} / \mathrm{cm}^{3}$). What is the expected terminal velocity of the ball?

Answer:

$$
v_{\text {terminal }}=\frac{2 r^{2}\left(\rho-\rho_{0}\right) g}{9 \eta}=\frac{2(1 \mathrm{~cm})^{2}(7.90-1.2613)\left(\frac{\mathrm{g}}{\mathrm{~cm}}\right) 980 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}}}{9 \times\left(10.69 \frac{\mathrm{~g}}{\mathrm{~cm} \times \mathrm{s}}\right)}=135.2 \frac{\mathrm{~cm}}{\mathrm{~s}}=1.352 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

3. (10 points) From the statements in column B, select the best match for each phrase in column A and put its letter in the adjacent blank. There is only one best match for each phrase.

Column A	Column B
1. According to the kinetic theory of gases, the average speed of gas molecules is always \qquad m_ than their RMS speed. 2. In the expression of viscous force, the coefficient η is referred to as \qquad i . 3. The Stokes-Einstein equation describes diffusion of a \qquad k object. 4. If a sedimentation process is performed using centrifugal acceleration instead of gravity acceleration (on the order of 10^{5} acceleration of gravity), such a process is called \qquad 5. Poiseuille's law describes \qquad h \qquad	a) cubic b) cooler c) flow of a liquid through a round tube under conditions of turbulent flow d) sedimentation coefficient e) ultracentrifugation f) larger g) elongated h) flow of a liquid through a round tube under conditions of laminar flow i) viscosity j) nicer k) spherical l) saturation centrifugation m) smaller n) ultracenturation o) density coefficient p) the journey of Hercules on his way home q) coefficient of viscous force r) the end of the world

4. (15 points) Air is a mixture. Neglecting tiny amounts of other gases, air can be considered to be 78 mole $\% \mathrm{~N}_{2}$ and 22 mole $\% \mathrm{O}_{2}$. What is the total number of $\mathrm{N}_{2}-\mathrm{O}_{2}$ collisions per second in one cm^{3} of air at a total pressure of exactly one bar and 298.15 K? [HINT: To make this calculation, you will need to know the "size" of nitrogen and oxygen molecules. The diameter of the \mathbf{N}_{2} molecule is reported to be $\mathbf{3 6 4} \mathrm{pm}$, and the diameter of the $\mathrm{O}_{\mathbf{2}}$ molecule is reported to be 346 pm .]

The total collision frequency in a binary mixture is determined by the equation

$$
Z_{A B}=\sigma_{A B}<v>_{A B} n_{A}^{*} n_{B}^{*}
$$

The collision cross-section is given by

$$
\sigma_{A B}=\pi\left(r_{A}+r_{B}\right)^{2}=\pi\left(\frac{3.64 \times 10^{-10} \mathrm{~m}}{2}+\frac{3.46 \times 10^{-10} \mathrm{~m}}{2}\right)^{2}=3.9592 \times 10^{-19} \mathrm{~m}^{2}
$$

The relative velocity is calculated by

$$
\left\langle v_{A B}\right\rangle=\sqrt{\frac{8 k T}{\pi \mu}}
$$

The reduced mass is calculated from the masses of the two materials. On a molar basis, it is

$$
\mu_{\text {molar }}=\frac{M_{\text {nitrogen }} M_{\text {oxygen }}}{M_{\text {nitrogen }}+M_{\text {oxygen }}}=\frac{2 \times 14.0067 \mathrm{~g} \times 2 \times 15.9994 \mathrm{~g}}{2(14.0067+15.9994) \mathrm{g}}=14.93688 \mathrm{~g} \mathrm{~mole}^{-1}
$$

We can calculate per molecule, or we can calculate on a molar basis, using R instead of k. They both give the same result, so we choose the latter.

$$
\left\langle v_{A B}\right\rangle=\sqrt{\frac{8 R T}{\pi \mu_{\text {molar }}}}=\sqrt{\frac{8\left(8.3144349 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mole}^{-1}\right)(298.15 \mathrm{~K})}{\pi\left(0.01493688 \mathrm{~kg} \mathrm{~mole}^{-1}\right)}}=650.09 \mathrm{~m} \mathrm{~s}^{-1}
$$

The number densities are calculated from the partial pressures.

$$
n_{i}^{*}=\frac{P_{i} N_{0}}{R T}
$$

For example, for nitrogen

$$
n_{\text {nitrogen }}^{*}=\frac{P_{\text {nitrogen }} N_{0}}{R T}=\frac{0.78 \times 10^{5} \mathrm{~Pa}\left(6.02211415 \times 10^{23} \mathrm{~mole}^{-1}\right)}{8.3144349 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mole}^{-1}(298.15 \mathrm{~K})}=1.8949 \times 10^{25} \mathrm{~m}^{-3}
$$

Similarly one can do a similar calculation of the number density of oxygen in air:

$$
n_{\text {oxygen }}^{*}=\frac{P_{\text {oxygen }} N_{0}}{R T}=\frac{0.22 \times 10^{5} \mathrm{~Pa}\left(6.02211415 \times 10^{23} \mathrm{~mole}^{-1}\right)}{8.3144349 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mole}^{-1}(298.15 \mathrm{~K})}=5.3444 \times 10^{24} \mathrm{~m}^{-3}
$$

Putting all of these together gives total collision frequency per volume:

$$
\begin{aligned}
& Z_{A B}=\sigma_{A B}<v \gg_{A B} n_{A}^{*} n_{B}^{*}=\left(3.9592 \times 10^{-19} \mathrm{~m}^{2}\right)\left(650.09 \mathrm{~m} \mathrm{~s}^{-1}\right)\left(1.8949 \times 10^{25} \mathrm{~m}^{-3}\right)\left(5.3444 \times 10^{24} \mathrm{~m}^{-3}\right) \\
&=2.606 \times 10^{34} \mathrm{~m}^{-3} \mathrm{~s}^{-1}
\end{aligned}
$$

In a volume of $1 \mathrm{~cm}^{3}$, the number of collisions is
Number of collisions $=Z_{A B}($ volume $)=2.606 \times 10^{34} \mathrm{~m}^{-3} \mathrm{~s}^{-1}\left(10^{-6} \mathrm{~m}^{3}\right)=2.606 \times 10^{28} \mathrm{~s}^{-1}$
5. (10 points) Bishop and Engel (J. Amer. Chem. Soc. 1975, 97, 6754-6762) studied the temperature dependence of the decomposition of the cis-azoalkane shown at the right. The temperature-dependent rate constants they reported are shown in the table as a function of temperature.

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	-24.82	-20.73	-17.02	-13.00	-8.95
$\mathrm{k}_{1}\left(\mathrm{~s}^{-1}\right)$	1.22×10^{-4}	2.31×10^{-4}	4.39×10^{-4}	8.50×10^{-4}	1.43×10^{-3}

Using all of these data, determine the enthalpy of activation, ΔH^{\neq}. (You must show a proper plot that explains how you found this enthalpy of activation.)

One plots the natural logarithm of the rate constant divided by the absolute temperature (in kelvins) versus the inverse of the absolute temperature.

From the slope, one finds the enthalpy of activation:

$$
\Delta H^{\neq}=-\operatorname{slope}(R)=(10121 \mathrm{~K})\left(8.3144349 \frac{\mathrm{~J}}{\mathrm{~K}-\mathrm{mol}}\right)=84.1 \mathrm{~kJ} / \mathrm{mol}
$$

Score for Page

6. (15 points) Hydrogen iodide can be synthesized from the elements in a gas-phase reaction. One proposed mechanism for the process is

$$
\begin{aligned}
I_{2} & \rightarrow 2 I & v_{1} & =k_{1}\left[I_{2}\right] \\
2 I & \rightarrow I_{2} & v_{2} & =k_{2}[I]^{2} \\
H_{2}+2 I & \rightarrow 2 H I & v_{3} & =k_{3}\left[H_{2}\right][I]^{2}
\end{aligned}
$$

Derive a differential rate law for the rate of production of HI if:
a) I_{2} and I are in a fast equilibrium throughout the reaction.
$K_{e q}=\frac{[I]^{2}}{\left[I_{2}\right]}$
Therefore $[I]^{2}=K_{e q}\left[I_{2}\right]$
The rate of production of HI is given by:
$\frac{d[H I]}{d t}=2 v_{3}=2 k_{3}\left[H_{2}\right][I]^{2}=2 k_{3} K_{e q}\left[H_{2}\right]\left[I_{2}\right]=2 \frac{k_{3} k_{1}}{k_{2}}\left[H_{2}\right]\left[I_{2}\right]$
b) the steady-state approximation can be applied to the $/$ atoms.

In this case, one starts with
$\frac{d[I]}{d t}=2 v_{1}-2 v_{2}-2 v_{3}=0$
By substitution
$\frac{d[I]}{d t}=0=2 k_{1}\left[I_{2}\right]-2 k_{2}[I]^{2}-2 k_{3}\left[H_{2}\right][I]^{2}$
This equation gives the steady-state value of the atom concentration:

$$
[I]^{2}=\frac{k_{1}\left[I_{2}\right]}{k_{2}+k_{3}\left[H_{2}\right]}
$$

Under these conditions, the rate of production of HI is:
$\frac{d[H I]}{d t}=2 v_{3}=2 k_{3}\left[H_{2}\right][I]^{2}=\frac{2 k_{3} k_{1}\left[H_{2}\right]\left[I_{2}\right]}{k_{2}+k_{3}\left[H_{2}\right]}$
Note the similarities between this result and the previous one. Also note the differences between these two approximations.
7. (15 points) The adsorption of a particular gas, A, is described well by the Langmuir isotherm with the Langmuir constant $b_{A}=0.85 \mathrm{kPa}^{-1}$ at $25^{\circ} \mathrm{C}$. (a) Calculate the pressure at which the fractional coverage is 0.15 .

$$
\Theta=\frac{\mathrm{b}_{A} \mathrm{P}_{A}}{1+\mathrm{b}_{A} \mathrm{P}_{A}}
$$

By rearrangement of this formula, one obtains an expression for the pressure in terms of the fractional coverage.

$$
\mathrm{P}_{A}=\frac{\Theta}{\mathrm{b}_{A}(1-\Theta)}=\frac{0.15}{0.85 k P a^{-1}(1-0.15)}=0.208 \mathrm{kPa}
$$

(b) Suppose one has a surface that is in equilibrium with two gases, one with $b_{A}=0.85 \mathrm{kPa}^{-1}$ and another with b_{B} $=1.7 \mathrm{kPa}^{-1}$ at $25^{\circ} \mathrm{C}$. Calculate the total pressure of a $50: 50$ mixture of these gases at which the fractional coverage of gas A is 0.15 .

$$
\Theta_{A}=\frac{b_{A} P_{A}}{1+b_{A} P_{A}+b_{B} P_{B}}, \quad \text { but } \quad P_{A}=P_{B}
$$

The equality of the two gas pressures means one only has to find the partial pressure of one gas, call it P_{A}.

$$
0.15=\frac{b_{A} P_{A}}{1+b_{A} P_{A}+b_{B} P_{A}}=\frac{b_{A} P_{A}}{1+\left(b_{A}+b_{B}\right) P_{A}}
$$

The equation can be rearranged to allow one to find the partial pressure, P_{A}.

$$
0.15=b_{A} P_{A}-0.15\left(b_{A}+b_{B}\right) P_{A}=\left(0.85 b_{A}-0.15 b_{B}\right) P_{A}
$$

And this equation can be rearranged to:

$$
P_{A}=\frac{0.15}{0.85 b_{A}-0.15 b_{B}}=\frac{0.15}{0.85\left(0.85 k P a^{-1}\right)-0.15\left(1.7 k P a^{-1}\right)}=0.32 \mathrm{kPa}
$$

The question asked for the total pressure. Because the two partial pressures are equal, one may easily find the total pressure as double the partial pressure of component A .

$$
P_{\text {total }}=P_{A}+P_{B}=2 P_{A}=0.64 \mathrm{kPa}
$$

8. (10 points) Fill in each blank with a single word or symbol.
a) In the equation describing reaction rate, the rate of change of the reactant concentration is
\qquad negative \qquad .
b) In simple collision theory, the coefficient \boldsymbol{p} in the bimolecular rate constant is always \qquad less \qquad than 1.
c) In the Langmuir adsorption model, the equilibrium coverage of a component A \qquad decreases \qquad when a second component is present in the gas phase.
d) In Michaelis-Menten kinetics describing enzyme catalysis, the meaning of \qquad K_{m} \qquad is the concentration of the substrate at half of the maximum initial reaction rate.
e) A radioactive decay is a classic example of \qquad first \qquad order process.
9. (5 points, extra credit) In class, we talked about the mechanism of the formation of hydrogen bromide from its elements:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{~g})
$$

One proposed mechanism of this reaction gives the following prediction of the rate law:

$$
\text { Rate }=\left(\frac{k_{1} k_{2}^{2} k_{3}^{2}}{k_{5}}\right)^{1 / 2} \frac{\left[H_{2}\right]\left[B r_{2}\right]^{3 / 2}}{k_{3}\left[B r_{2}\right]+k_{4}[H B r]}
$$

where the various \boldsymbol{k} 's are rate constants for various elementary steps. Consider the overall reaction.
(a) What is the apparent initial order with respect to Br_{2} for this reaction?

Apparent initial order with respect to Br_{2} is $1 / 2$.
(b) What is the apparent initial order with respect to HBr ?

Apparent initial order with respect to HBr is 0 .
(c) What is the initial order with respect to hydrogen?

The order with respect to H_{2} is always 1 .
(d) What is the apparent order with respect to HBr near the end of reaction?

The apparent order with respect to HBr as the concentration builds up is -1 .

