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Physical Chemistry

Lecture 7
Special steps; chain reactions; 
surface and enzyme kinetics

Photochemical and sensitized 
steps

Light is sometimes 
used to activate 
processes
   quantum yield

Some added 
materials produce 
reactive species by 
reaction
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Unimolecular reactions:
Lindemann’s mechanism

“Simple” reactions are 
more complex than they 
seem
Frederick Lindemann 
proposed intervention 
of a mediator to 
produce a highly 
reactive intermediate in 
unimolecular reactions
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Variations and refinements of 
Lindemann’s mechanism

Hinshelwood
 Explicit energy dependence 

of the rate constant
Rice and Ramsperger, and 
independently Kassel 
developed a theory (RRK 
theory)
 Explicit account of 

molecular vibrational state
Marcus
 Refined RRK theory in a 

number of ways
Modern version is called 
RRKM theory
 Predicts functional 

dependence of 
unimolecular reaction rates 
well

Chain reactions
Many reactions have multiple steps in the 
mechanism
Chain reactions, once started, continue
 Polymerization
 Some photochemical reactions

Classes of steps
 Initiation  - produce reactive species
 Propagation - remove and produce reactive 

species
 Termination - remove reactive species

Initiation steps

Photochemical steps

Thermal steps

Sensitized steps
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Propagation steps
Steps that use and create reactive species
Examples:

Br H HBr H

H Cl HCl Cl
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Termination steps
Steps that remove reactive species
Stable-product formation

Wall deactivation

Stable-radical formation; scavenging

2 2 5 4 10C H C H 

R wall stable wall complex  

R NO RNO  

Vinyl polymers
“Simple” chain reaction n monomer polymer

n M Mn
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Sidechain, X Polymer
H Poly(ethylene)

CH3 Poly(propylene)
Cl Poly(vinyl chloride)

     Poly(styrene)

X

Vinyl polymerization
Chain reaction
Generally initiated with some radical
 Deliberately added
 Photochemically induced
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Mathematics of vinyl 
polymerization

Approximation at steady state
 Rate of initiation is equal to rate of 

termination

Radical-combination termination

Other possible termination steps
 Disproportionation
 Chain transfer
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Reactions at surfaces
Very often reaction happens at “special” sites
 Enzyme action
 Heterogeneous catalysis

Simple surface reaction scheme

A gas A adsorbed

A adsorbed A gas

A adsorbed P adsorbed

P adsorbed P gas

k

k

k

k

ads

des

react

P des

( ) ( )

( ) ( )

( ) ( )

( ) ( ),

 

 

 

 



3

Langmuir isotherms
Assume equilibrium between 
gas-phase A and adsorbed A
 Langmuir isotherm gives relation 

between gas and surface 
concentrations

 Generalize for multiple materials 
adsorbed, as in a chemical reaction
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Langmuir-Hinshelwood 
kinetics

Second-order surface-
mediated reaction
Rate depends on the 
partial pressures of A 
and B
 At  low pressure, rate is 

second-order in the gas 
pressure

 At high pressures of both 
reactants, the rate 
becomes zero-order in 
pressure
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Eley-Rideal kinetics

Second-order surface-
mediated 
transformation
One of the reactants 
comes in from the gas 
phase (without 
adsorption)
 Always first order with 

respect to A
 Usually requires a highly 

reactive gas-phase 
species such as H atom
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Langmuir-Hinshelwood versus 
Eley-Rideal kinetics

Langmuir-Hinshelwood kinetics
 Both partners of a second-order reaction at 

the surface
 Partners diffuse on surface until meeting to 

react

Eley-Rideal kinetics
 One partner of a second-order reaction 

held at the surface
 Second comes directly from the gas phase
 One or both must be highly reactive

Michaelis-Menten enzyme 
catalysis

Mechanism is similar to surface catalysis
 Form complex
 Complex may
 Fall apart
 React

Velocity is found assuming fast 
equilibrium of first two steps
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Example of Michaelis-Menten 
kinetics

Hydrolysis of N-glutamyl-L-
phenylalanine with -
chymotrypsin
J. Chem. Ed., 50, 149 
(1973).
Lineweaver-Burk plot
 Plot 1/v versus 1/[S]

Obtain Michaelis-Menten
parameters from  slope 
and intercept of plot
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Summary
Complex reactions usually described in terms of elementary 
steps
Lindemann’s mechanism 
 Modern version is RRKM theory (Rice, Ramsperger, 

Kassel, and Marcus)
Polymerization occurs by a chain reaction
 Initiation
 Propagation
 Termination

Surface chemistry
 Adsorption and desorption steps included
 Langmuir-Hinshelwood versus Eley-Rideal mechanisms

Enzyme kinetics
 Formation of complex
 Michaelis-Menten kinetics


