····				
Physical Cl	nemis	try		
Lecture 6				
Reaction mech reaction-veloci	nanisms ty predi	and ictions		

Findin	g reaction velocity
Assuming allows one	that every step is elementary to know its rate equation
 Find expre reactant or 	ssions for disappearance of appearance of
 Include ter reactants (ms for every step that affects (or products), with stoichiometry
Example fr	om Bodenstein's work:
$-\frac{d[H_2]}{dt} = v_2$	$-v_4 \qquad \frac{d[HBr]}{dt} = v_2 + v_3 - v_3$
$-\frac{u_1 D v_2 J}{dt} = v_1$	$+ v_3 - v_5$

Fast-e	qu	ilib	riu	ım	ар	proximation
◆ One s limitin	tep (Ig	cont	aini	ng a	n in	termediate is rate-
Prior s	step	is re	ever	sible	;	
(1)	Α	+	B	\rightarrow	С	fast
(2)	С	\rightarrow	A	+	B	fast
(3)	С	\rightarrow	P	rodu	ct	slow
♦ One p two s	resu teps	imes to re	s a o elat	quas e the	i-eqi e coi	uilibrium in the first
$K_{eq} = \frac{k_1}{k_2} \approx \frac{[0]}{[A]}$	C] [[B]	⇒	<u>d[P</u>	roduc dt	<u>t]</u> _	$k_3[C] = k_3 K_{eq}[A][B]$

Summary	
Every reaction is described by an equ	ation
$H_2(gas) + Br_2(gas) \rightarrow 2HB$	Br (gas)
"Simple" reaction sequences solved e	xactly
Generally, equation like above does N reaction course	IOT describe
 Often cannot get exact time depende concentrations for reactions 	nce of
 Use a mechanism 	
 Overall reaction expressed in terms of eler Not unique 	mentary steps
 "Solve" mechanism, using approximations 	s if necessary
 Rate-limiting steps 	
 Steady-state approximation 	
 Fast-equilibrium approximation 	