

Integrated rate order in react	e law - tant ((- secc Case I	ond)
 Second-order rate law may be integrated 	v = -	$\frac{1}{2}\frac{d[A]}{dt} =$	$= k_2 [A]^2$
 Linear plot of 1/[A(t)] versus t Often see reported rate constant for 	$\frac{1}{[A(t)]}$	$= \frac{1}{[A(0)]}$	+ 2k ₂ t
disappearance of A • k _{eff} = 2 k ₂ • Exercise caution in assessing reported rate constants		= <u>[</u> <i>A</i> (0)]	$+ k_{eff} t$

	Summary
۲	Chemical change quantified by the mathematics of chemical kinetics
۲	Rate constant and order characterize a reaction
•	Determining rates and velocities Differential method Integrated-rate-law method
	Results often limited to a particular time scale or situation Initial reaction With some materials in excess