

Thermodynamics and kinetics

- Thermodynamics
- Observe relative stability of states
- Energy differences
- Static comparisons of states
- Kinetics
- Observe changes of state over time
- Several different topics
- Empirical description of the rate of reaction
- Determination of experimental parameters
- Microscopic theories

Rates

A chemical reaction is described by an equation of the type

$$
\mathrm{H}_{2}(\text { gas })+\frac{1}{2} \mathrm{O}_{2} \text { (gas) } \rightarrow \mathrm{H}_{2} \mathrm{O} \text { (liquid) }
$$

- Rates:
- Rate of change of $\left[\mathrm{H}_{2} \mathrm{O}\right]: \quad \mathrm{d}\left[\mathrm{H}_{2} \mathrm{O}\right] / \mathrm{dt}$
- Rate of change of $\left[\mathrm{H}_{2}\right]: \quad d\left[\mathrm{H}_{2}\right] / d t$
- Rate of change of $\left[\mathrm{O}_{2}\right]: \quad \mathrm{d}\left[\mathrm{O}_{2}\right] / \mathrm{dt}$
\bullet Rates related by the overall equation
- 1 oxygen molecule disappears for every 2 hydrogen molecules in the above reaction

Rate laws

Describe of how reaction velocity depends on parameters such as concentrations, temperature, pressure, etc.

$$
v=f\left(\left[A_{\text {react }}\right],\left[B_{\text {prod }}\right], T, P\right)
$$

- May be simple or complex
- Gives insight into the manner in which the reaction occurs
- Reactions do not necessarily occur in the manner indicated by the overall reaction equation

Reaction velocity

The rates of appearance of products and disappearance of reactants are related by stoichiometry of the reaction
Define the reaction velocity, v, in terms of "normalized" rates of appearance of products and disappearance of reactants

$$
v=\frac{1}{v_{i}} \frac{d[i]}{d t}
$$

- Example of the production of water:
$v=-\frac{d\left[\mathrm{H}_{2}\right]}{d t}=-2 \frac{d\left[\mathrm{O}_{2}\right]}{d t}=\frac{d\left[\mathrm{H}_{2} \mathrm{O}\right]}{d t}$

Differential method of determining order

- Calculate approximate derivatives as ratios of differences for specific concentrations
- Plot approximate derivatives versus concentration
$\ln (v)=k+n \ln (C)$

- Example: Decomposition of di-tert-butyl peroxide - Line slope = 1.04
- Order with respect to DTBP is close to 1 under these conditions (and probably is 1)

Integrated rate laws - first order in a reactant

- For simple chemical reactions, integrate the rate laws to determine how the reactant concentration changes $v=-\frac{d[A]}{d t}=k_{1}[A]$ with time
- First-order rate law
- Exponential in time
- Linear form is the
$\ln ([A(t)])=\ln ([A(0)])-k_{1} t$
$[A(t)]=[A(0)] \exp \left(-k_{1} t\right)$

First-order rate law

- Example: decomposition of di-tert-butyl peroxide
- slope $=-\mathrm{k}_{1}$
- Rate constant for this reaction is determined to be $\mathrm{k}_{1}=0.0193 \mathrm{~min}^{-1}$ from the slope of the line -

Reactant or Product?
First-order Product

Rely on conservation of matter

$$
\begin{aligned}
{[B(t)] } & =[A(0)]-[A(t)] \\
& =[A(0)]-[A(0)] e^{-k t} \\
& =[A(0)]\left(1-e^{-k t}\right)
\end{aligned}
$$

- Rearrange to find the linear form

$$
\ln \left(\frac{[A(0)]-[B(t)]}{[A(0)]}\right)=-k t
$$

Integrated rate law - second order in reactant (Case I)

- Second-order rate law may be integrated

$$
v=-\frac{1}{2} \frac{d[A]}{d t}=k_{2}[A]^{2}
$$

- Linear plot of 1/[A(t)] versus t
$\frac{1}{[A(t)]}=\frac{1}{[A(0)]}+2 k_{2} t$
- Often see reported rate constant for disappearance of A
$=\frac{1}{[A(0)]}+k_{e f f} t$
- $k_{\text {eff }}=2 k_{2}$
- Exercise caution in assessing reported rate constants

Integrated rate laws for other reactant orders

- Integration gives a general form for all orders (except 1)
- The power of the function of concentration linear in time is related to order of reaction for the conditions under which the system is observed

Second-order rate law

- Example:
- Collision-induced decomposition of diacetylene, DA
- Hou and Palmer, 1965
- Linear plot of [DA] ${ }^{-1}$ versus t
$-k_{\text {eff }}=6.79 \times 10^{7}$
$\mathrm{cm}^{3} / \mathrm{mol}-\mathrm{sec}$

- -1.

Summary

- Chemical change quantified by the mathematics of chemical kinetics
- Rate constant and order characterize a reaction
- Determining rates and velocities - Differential method
- Integrated-rate-law method
- Results often limited to a particular time scale or situation
- Initial reaction
- With some materials in excess

