

## Molecular orbitals

- Electronic wave functions for the molecule
- Ways to approximate molecular orbitals
- Linear combination of atomic orbitals (LCAO)
- Hueckel orbitals
- SCF Hartree-Fock orbitals
- Valence-bond orbitals

Determine approximate energy as an integral of the Hamiltonian operator over the function

$$
E=\int_{\substack{\text { alI } \\ \text { space }}} \Psi_{M O}^{*} H \Psi_{M O} d^{3} \mathbf{r}
$$

## Molecular-orbital symmetry

$\Psi_{M O, \pm}=\frac{1}{\sqrt{2\left(1 \pm S_{A B}\right)}}\left\{\Psi_{1 s A} \pm \Psi_{1 s B}\right\}$

$$
\begin{gathered}
E_{M O, \pm}=\frac{1}{1 \pm S_{A B}}\left\{H_{A A} \pm H_{A B}\right\} \\
H_{A A}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{a_{0}}\left\{\left(1+\frac{a_{0}}{R}\right) e^{-2 R / a_{0}}-\frac{1}{2}\right\} \\
H_{A B}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{a_{0}}\left\{S_{A B}\left(\frac{a_{0}}{R}-\frac{1}{2}\right)-e^{-R / a_{0}}\left(1+\frac{R}{a_{0}}\right)\right\}
\end{gathered}
$$

electron orbitals

- Can be evaluated for
arogen-like is orbitals
- No electron interaction
- Linear combinations of
orbitals centered on each
- Uses a small set of orbitals

Normalization constant
expressed in terms of an
overlap integral, $\mathrm{S}_{\mathrm{AB}}$
One-electron energy give
One-electron energy given
as integrals over the one-

## Energetics of $\mathrm{H}_{2}+$ orbitals <br> - Calculation for $1 s$ orbitals <br> - The bonding orbital (sum) has a stable state at a finite nuclear distance <br> - The antibonding orbital (difference) shows no stability, with minimum energy at the dissociated state <br> 

- MO theory
- Less "ad hoc"
- Does not give description in terms of atom centered bonds
Difficult to find
expressions exactly
because of difficulty in
solving Schroedinger's equation
- Modern theory uses numerical solutions - Hartree-Fock solutions

Comparison of MO theory with Lewis theory

Lewis theory

- Ad hoc postulate
- Focuses on bonding
between atomic centers
- Rules are arbitrary
- Predicts certain bonding motifs and stabilities
- Use eigenvalues to describe properties of wave function
- Invariance of symmetry properties of the square of the wave function defines wave functions
- Inversion through origin
- Reflection through a plane
- Rotation about an axis
- Related to angular momentum about axis
- Symmetry under inversion
$i \Psi(x, y, z)=\Psi(-x,-y,-z)= \pm \Psi(x, y, z)$
- Symmetry under reflection through $x$ y plane
$\sigma \Psi(x, y, z)=\Psi(x, y,-z)= \pm \Psi(x, y, z)$
- Symmetry under rotation by $\theta$ $R_{z, \theta} \Psi(x, y, z)$
$=\Psi(x \cos \theta+y \sin \theta, y \cos \theta-x \sin \theta,-z)$ $= \pm \Psi(x, y, z)$



## Excited one-electron LCAO molecular orbitals of $\mathrm{H}_{2}{ }^{+}$

- Form LCAO-MOs
from combinations of $\Psi_{\sigma, 2 s}=N\left\{\Psi_{2 A A}+\Psi_{2, B}\right\}$
higher-energy atomic $\Psi_{\sigma^{\prime}, 2 s}=N\left\{\Psi_{2 A}-\Psi_{2 s B}\right\}$ orbitals
- Must be symmetryconnected
- Estimate energy by $\Psi_{\sigma, 2 p}=N\left\{\Psi_{2 p, A}+\Psi_{2 p, B}\right\}$
integral of
Hamiltonian
- One-electron MOs $\quad \Psi_{\pi, 2 p}=N\left\{\Psi_{2 p, A}-\Psi_{2 p, B}\right\}$ and $N\left\{\Psi_{2 p_{, ~} A}-\Psi_{2 p_{, ~}, B}\right\}$ configurations

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Connected }
\end{array} & \Psi_{\sigma, 2 p}=N\left\{\Psi_{2 p_{A} A}-\Psi_{2 p_{B} B}\right\} \\
\text { - Estimate energy by } & \Psi_{\sigma^{*}, 2 p}=N\left\{\Psi_{2 p_{2} A}+\Psi_{2 p_{z} B}\right\} \\
\text { integral of }
\end{array}
$$ $\cdots$

## Molecular orbital nomenclature

- Angular momentum about z
(internuclear) axis
- 0, o state
- $\pm 1, \pi$ state
- $\pm 2, \delta$ state
- $\pm 3, \phi$ state

- Et cetera


## Molecular aufbau principle

- Like aufbau for atoms
- Fill one-electron states according to energy
- Take Pauli's principle into account
- Be aware of degeneracy of $\pi, \delta, \phi$, etc
- Filling order (energy order) for homonuclear diatomic molecules of the first rows
$\sigma_{g}(1 s), \sigma_{u}^{*}(1 s), \sigma_{g}(2 s), \sigma_{u}^{*}(2 s), \pi_{u}(2 p), \sigma_{g}(2 p), \pi_{g}^{*}(2 p), \sigma_{u}^{*}(2 p)$

Further excited configurations of dihydrogen

- $\left(1 \sigma_{g}\right)^{1}\left(2 \sigma_{g}\right)^{1}$ or $\left(1 \sigma_{g}\right)^{1}\left(3 \sigma_{g}\right)^{1}$
- $L_{z}\left(\sigma_{g}\right)\left(\sigma_{g}\right)=L_{z 1} \sigma_{g}+L_{z 2} \sigma_{g}=0\left(\sigma_{g}\right)\left(\sigma_{g}\right)$
- $\left(i \sigma_{g}\right)\left(i \sigma_{g}\right)=\left(+1 \sigma_{g}\right)\left(+1 \sigma_{g}\right)=(+1)^{2}\left(\sigma_{g}\right)^{2}$
- Can be a singlet or a triplet
$\bullet\left(1 \sigma_{\mathrm{g}}\right)^{1}\left(1 \pi_{\mathrm{u}}\right)^{1}$
- $\mathrm{L}_{z}\left(\sigma_{\mathrm{g}}\right)^{1}\left(\pi_{u}\right)^{1}=\mathrm{L}_{21}\left(\sigma_{\mathrm{g}}\right)\left(\pi_{u}\right)+\left(\sigma_{\mathrm{g}}\right) \mathrm{L}_{\mathrm{z2}}\left(\pi_{\mathrm{u}}\right)$
$=1\left(\sigma_{g}{ }^{11} \pi_{u}\right)^{1}$
- i $\left(\sigma_{g}\right)^{1}\left(\pi_{\mathrm{u}}\right)^{11}=\left(\mathrm{i} \sigma_{\mathrm{g}}\right)\left(\mathrm{i} \pi_{\mathrm{u}}\right)=\left(+1 \sigma_{\mathrm{g}}\right)\left(-1 \pi_{\mathrm{u}}\right)=$ $(-1)^{( }\left(\sigma_{g}\right)^{1}\left(\pi_{u}\right)^{1}$
- Can be either a singlet or a triplet



## Summary

- Molecular orbitals describe one-electron states of a molecule - LCAO-MO provides a convenient "picture"
- Hydrogen-molecule-ion states are a simple basis
- Estimate energies for the approximate states by integration
- Can use more sophisticated functions with variation principle to get better representations of the states
- Create configurations by filling via the aufbau principle
- Must know filling order (i.e. relative energies of states)
- Remember spatial degeneracies
- Ensure Pauli's principle is not violated
- Multi-electron state labeled by
- Angular momentum about the $z$ axis
- Inversion symmetry
- Total spin

