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Physical Chemistry

Lecture 23
Diatomic Molecular Orbitals of H2

+

Molecular orbitals

Electronic wave functions for the molecule
Ways to approximate molecular orbitals
 Linear combination of atomic orbitals (LCAO)

 Hueckel orbitals
 SCF Hartree-Fock orbitals

 Valence-bond orbitals
Determine approximate energy as an integral 
of the Hamiltonian operator over the function
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+ molecular orbitals

LCAO-MO approach
 Linear combinations of 

orbitals centered on each 
atom

 Uses a small set of orbitals
Normalization constant 
expressed in terms of an 
overlap integral, SAB

One-electron energy given 
as integrals over the one-
electron orbitals
 Can be evaluated for 

hydrogen-like 1s orbitals
 No electron interaction
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Energetics of H2
+ orbitals

Calculation for 1s 
orbitals
The bonding orbital
(sum) has a stable 
state at a finite 
nuclear distance
The antibonding 
orbital (difference) 
shows no stability, 
with minimum 
energy at the 
dissociated state

Comparison of MO theory with 
Lewis theory

MO theory
 Less “ad hoc”
 Does not give description 

in terms of atom-
centered bonds

 Difficult to find 
expressions exactly 
because of difficulty in 
solving Schroedinger’s 
equation

 Modern theory uses 
numerical solutions
 Hartree-Fock solutions

Lewis theory
 Ad hoc postulate
 Focuses on bonding 

between atomic centers
 Rules are arbitrary
 Predicts certain bonding 

motifs and stabilities

Molecular-orbital symmetry

Use eigenvalues to 
describe properties of 
wave function
Invariance of symmetry 
properties of the square 
of the wave function 
defines wave functions
 Inversion through origin
 Reflection through a 

plane
 Rotation about an axis

 Related to angular 
momentum about axis 

Symmetry under 
inversion

Symmetry under 
reflection through x-
y plane

Symmetry under 
rotation by 
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H2
+ molecular-orbital nomenclature

Symmetry under 
inversion
 Eigenvalue of +1

 Gerade wave function
 Subscript g

 Eigenvalue of –1
 Ungerade wave 

function
 Subscript u

g and u
* orbitals

Slices through the orbitals along 
the axis

Excited  one-electron LCAO 
molecular orbitals of H2

+

Form LCAO-MOs 
from combinations of 
higher-energy atomic 
orbitals
 Must be symmetry-

connected
 Estimate energy by 

integral of 
Hamiltonian

One-electron MOs 
used for creating 
configurations
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Molecular orbital 
nomenclature

Angular momentum 
about z 
(internuclear) axis
 0,  state
 1,  state
 2,  state
 3,  state
 Et cetera

Molecular aufbau principle

Like aufbau for atoms
Fill one-electron states according to energy
 Take Pauli’s principle into account
 Be aware of degeneracy of , , , etc

Filling order (energy order) for homonuclear
diatomic molecules of the first rows

)2(),2(),2(),2(),2(),2(),1(),1( **** ppppssss ugguugug 

Dihydrogen configurations
Ground configuration
 (1g)2

 Lz (g)2 = Lz1g + Lz2g = 0 (g)2

 i (g)2 = (ig) (ig) = (+1g)(+1g) = (+1)2 (g)2

 Has to be a singlet because of pairing of electrons
First excited configuration, probably unstable
 (1g)1 (1u

*)1

 Lz (g)1 (u
*)1 = 0 (g)1 (u

*)1

 i (g)1(u
*)1 = (ig) (iu

*) = (+1g)(-1u
*) =       

(-1) (g)1(u
*)1

 Can be either a “singlet” or a “triplet” without 
violating Pauli’s principle

 Leads to two terms

Further excited configurations 
of dihydrogen

(1g)1 (2g)1 or (1g)1 (3g)1

 Lz (g)(g) = Lz1g + Lz2g = 0 (g)(g) 
 (ig) (ig) = (+1g)(+1g) = (+1)2 (g)2

 Can be a singlet or a triplet
(1g)1 (1u)1

 Lz (g)1 (u)1 = Lz1(g) (u) + (g) Lz2(u)            
= 1 (g

)1(u)1

 i (g)1(u)1 = (ig) (i u) = (+1g)(-1  u) =        
(-1) (g)1( u)1

 Can be either a singlet or a triplet
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Labeling homonuclear 
diatomic terms

Use total angular momentum about the z axis as a 
primary label

Use symmetry under inversion as a further label

Use the total spin, as one does with atoms
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Terms for H2
Ground state (1g)2

 X1g
+

First excited 
configuration 
(1g)1(1u)1

 B1u
+

 b3u
+

Next configuration 
(1g)1(2g)1

 E1g
+

 a3g
+

(1g)1(1u)1

 C1u

 c3u

Example potential-energy diagrams for two 
hydrogen-molecule states

Summary

Molecular orbitals describe one-electron states of a molecule
 LCAO-MO provides a convenient “picture”
 Hydrogen-molecule-ion states are a simple basis

Estimate energies for the approximate states by integration
Can use more sophisticated functions with variation principle to 
get better representations of the states
Create configurations by filling via the aufbau principle
 Must know filling order (i.e. relative energies of states)
 Remember spatial degeneracies
 Ensure Pauli’s principle is not violated

Multi-electron state labeled by
 Angular momentum about the z axis
 Inversion symmetry
 Total spin


