

Mathematics of random walks

- Probability has two factors

$$
P(q ; m)=\left(\frac{1}{2}\right)^{m} C(n, p)
$$

- Number of ways to end up at q is a combinatorial factor based on the number of positive steps, p, and the number of negative steps, n

$$
C(n, p)=\frac{m!}{n!p!}=\frac{m!}{\left(\frac{m+q}{2}\right)!\left(\frac{m-q}{2}\right)!}
$$

Random walk in one dimension

- Particle hops from site to site
- Only one step per hop
- Probability of hopping in either direction is $1 / 2$ for each step
- Calculate probability that, after m steps, the particle is at position q

Calculation of averages in a one-dimensional random walk

Use the probability, P, to get averages of functions of the distance in m steps

$$
\begin{aligned}
& <f(q)\rangle=\sum_{q=-m}^{+m} P(q, m) f(q)=\left(\frac{1}{2}\right)^{m} \sum_{q=m}^{+m} \frac{m!}{\left(\frac{m+q}{2}\right)!\left(\frac{m-q}{2}\right)!} f(q) \\
& \text { - Examples: } \\
& \langle q\rangle=0 \\
& \left\langle q^{2}\right\rangle=m
\end{aligned}
$$

- The average position does not appear to change with number of steps, but the square of the distance traveled does.

Example random walk

- Movement of He in a given time
- $\mathrm{T}=298.15 \mathrm{~K}$
- $\mathrm{P}=1 \mathrm{bar}$
- Distance moved
$\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{m \lambda}=\sqrt{\langle\tau\rangle t \lambda}$

TIME	$\boldsymbol{\Delta x}$
1 second	1.6 cm
1 minute	12.1 cm
1 hoür	93.9 cm
1 day	460 cm
1 week	1220 cm

- Typical flask is of the order of 10 cm in diameter.
- In one minute, a molecule samples a reasonable fraction of the environment in that flask.

Small-step-size, large-stepnumber random walk

- Treat the distribution function, P , as a

$$
\begin{aligned}
& \text { continuous function } \\
& \qquad P(q, m)=\frac{2}{\sqrt{2 \pi m}} \exp \left(-\frac{q^{2}}{2 m}\right)
\end{aligned}
$$

- Technically only correct for either even or odd q, but we "smooth" the probability over many steps
-Gaussian function
- Normalized probability distribution function

Gaussian functions

Occur in many different situations where random processes affect the experiment

$$
P(x, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)
$$

- Shape is determined by the standard deviation, σ
- Large σ, wide function
- Small σ, narrow function
- Random noise is Gaussian

Gas-phase diffusion

Diffusion coefficient related to gas-kinetic parameters $D=k<v>\lambda$
where $k=0.5$ from simple kinetic theory
$k=0.599$ from more accurate theory
Measured and calculated gas diffusion coefficients at 273.15 K and 1.01325 bar

Noble Gas	Diffusion Coefficient	
	Calculated	Experimental
Neon	$4.35 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$	$4.52 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
Argon	$1.54 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$	$1.57 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
Krypton	$0.93 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$	$0.93 \times 10^{-5} \mathrm{~m}^{\mathbf{2}-1}$
Xenon	$0.57 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$	$0.58 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$

Macroscopic diffusion

Diffusion eliminates concentration gradients

- Diffusion can be expressed in terms of the changes in concentrations
- Mass flux across an area, J
- Fick's first law in one dimension: diffusion is "caused" by a concentration gradient

$$
J=-D \frac{\partial c}{\partial x}
$$

Diffusion from a point source

Δ Random movement of molecules is diffusion

- Described by a parameter, D, the diffusion coefficient
Diffusion in one dimension described by the probability distribution

$$
P(x, t) d x=\frac{1}{\sqrt{4 \pi D t}} \exp \left(-\frac{x^{2}}{4 D t}\right) d x
$$

Diffusion in three dimensions

- Assume the diffusion in the three dimensions is uncorrelated

$$
P(x, y, z ; t) d x d y d z=P(x, t) P(y, t) P(z, t) d x d y d z
$$

$$
=\frac{1}{(4 \pi D t)^{3 / 2}} \exp \left(-\frac{x^{2}+y^{2}+z^{2}}{4 D t}\right) d x d y d z
$$

\bullet In spherical co-ordinates it simplifies and depends only on r
$P(r, \theta, \phi ; t) d \Omega=\frac{1}{(4 \pi D t)^{3 / 2}} \exp \left(-\frac{r^{2}}{4 D t}\right) r^{2} \sin \theta d r d \theta d \phi$

Macroscopic diffusion

Fick's second law: The rate of change of concentration in a volume is determined by the gradient of the flux across its boundaries

$$
\frac{\partial c}{\partial t}=-\frac{\partial J}{\partial x}=\frac{\partial}{\partial x}\left(D \frac{\partial c}{\partial x}\right)=D\left(\frac{\partial^{2} c}{\partial x^{2}}\right)
$$

- In three dimensions

$$
\frac{\partial c}{\partial t}=D \nabla^{2} c
$$

Solutions of Fick's equations

- Depends on boundary conditions
- Example: diffusion between two tubular regions, like from sugar water into pure water in a pipe

"Typical" diffusion coefficients

Gas $\left(0^{\circ} \mathrm{C}\right)$	$\mathrm{D} /\left(10^{-4} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)$	Liquid $\left(\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$	$\mathrm{D} /\left(10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)$
H_{2}	1.5	$\mathrm{H}_{2} \mathrm{O}$	2.4
O_{2}	0.19	$\mathrm{CH}_{3} \mathrm{OH}$	2.3
$\mathrm{~N}_{2}$	0.15	$\mathrm{C}_{6} \mathrm{H}_{6}$	2.2
CO_{2}	0.10	Hg	1.7
$\mathrm{C}_{2} \mathrm{H}_{4}$	0.09	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	1.0
Xe	0.05	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$	0.6

Summary

Random walk is a simple theory of movement
Diffusion describes the results of random movement of molecules

- Random-walk derivation
- Fick's Laws

Diffusion coefficient characterizes the material

