


















Gas-pł	nase diff	fusion
Diffusion coeffice	ient related	to gas-kinetic
parameters	D = k < v >	×λ
where k =	0.5 from si	mple kinetic theory
k =	0.599 from m	ore accurate theory
Measured and c coefficients at 2		
Noble Gas	Noble Gas Diffusion Coefficient	
	Calculated	Experimental
Neon	4.35 x 10 ⁻⁵ m ² s ⁻¹	4. 52 × 10 ⁻⁵ m ² s ⁻¹
Argon	1.54 x 10 ⁻⁵ m ² s ⁻¹	1.57 x 10 ⁻⁵ m ² s ⁻¹
Krypton	0.93 x 10 ⁻⁵ m ² s ⁻¹	0.93 x 10 ⁻⁵ m ² s ⁻¹
Xenon	0.57 × 10 ⁻⁵ m ² s ⁻¹	0.58 x 10 ⁻⁵ m ² s ⁻¹

Gas (0°C)	D/(10 ⁻⁴ m ² s ⁻¹)	Liquid (25°C)	D/(10 ⁻⁹ m ² s ⁻¹
H ₂	1.5	H ₂ O	2.4
02	0.19	CH ₃ OH	2.3
N ₂	0.15	C ₆ H ₆	2.2
CO2	0.10	Hġ	1.7
C ₂ H ₄	0.09	C ₂ H ₅ OH	1.0
Xe	0.05	C ₃ H ₇ OH	0.6

 Summary
Random walk is a simple theory of movement
Diffusion describes the results of random movement of molecules Random-walk derivation Fick's Laws
Diffusion coefficient characterizes the material