

Energetics and configuration

- Helium ground state has two 1s electrons
- Product representation gives the configuration
- Configuration indicates number of electrons in each type of orbital
- Higher-energy configurations
- Typical minimum increase in energy (to next-lowest configuration) found by promotion of a single electron to the next lowest available single-electron energy state
- Can find all configurations by successive promotion
$(1 s)^{2}$
$E_{i e}=2 E_{1 s}$
$(1 s)^{1}(2 s)$
$E_{i e}=E_{1 s}+E_{2 s}$
$(1 s)^{1}(2 p)^{1}$
$E_{i e}=E_{1 s}+E_{2 p}$

Energy-level estimation

Use independentelectron model as a start

- Energies of the helium-atom states estimated
- Promote electrons singly to create configurations

Indistinguishability

- In practice, one cannot distinguish electrons by labels
- Theory must reflect the ambiguity this fact requires
- Interchange of labels cannot have a noticeable effect on properties like energy or electron density
- Requirement on total multi-electron wave function
- Electrons are fermions, particles whose wave functions change sign upon interchange of two particles
- Multi-electron wave functions reflect this property
- Example of the helium atom
- We use the interchange operator, $I_{a b}$, to indicate this property
$I_{12} \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\Psi\left(\mathbf{r}_{2}, \mathbf{r}_{1}\right)=-\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$

Application to helium-atom ground state

- Helium-atom state consists of two parts
- Spatial part
- Spin part
- Intechanging the electrons must change $\quad I_{12} \Psi_{g s}=\left[I_{12} \Psi_{1 s}\left(\mathbf{r}_{1}\right) \Psi_{1 s}\left(\mathbf{r}_{2}\right)\right]\left[I_{12} \Psi_{\text {spin }}\right]$ the sign of the wave function
- Spatial part does not change sign
- Spin part must change $\quad I_{12} \Psi_{\text {spin }}=-\Psi_{\text {spin }}$ sign
$=\left[\Psi_{15}\left(\mathbf{r}_{2}\right) \Psi_{15}\left(\mathbf{r}_{1}\right)\right]\left[I_{12} \Psi_{\text {spin }}\right]$
$=\left[\Psi_{15}\left(\mathbf{r}_{1}\right) \Psi_{15}\left(\mathbf{r}_{2}\right)\right]\left[I_{12} \Psi_{\text {spin }}\right]$
$\Psi_{g s}=\Psi_{1 s}\left(\mathbf{r}_{1}\right) \Psi_{1 s}\left(\mathbf{r}_{2}\right) \Psi_{s p i n}$

Indistinguishability of multielectron spin wave functions

- The helium groundstate spatial wave function is symmetric upon interchange
- The spin part must be antisymmetric under interchange of particles
- Consider products of possible wave functions
- Make combinations that retain indistinguishability
- Mate antisymmetric spin combinations with symmetric spatial functions, and vice versa

Acceptable ground-state wavefunction of helium

- Pair the symmetric space part with the antisymmetric spin part

$$
\begin{aligned}
\Psi_{g s}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) & =\Psi_{1 s}\left(\mathbf{r}_{1}\right) \Psi_{1 s}\left(\mathbf{r}_{2}\right) \frac{1}{\sqrt{2}}(\alpha(1) \beta(2)-\beta(1) \alpha(2)) \\
E_{g s} & =2 E_{1 s}+J_{1 s, 1 s} \\
J_{1 s, 1 s} & =\frac{5}{4} E_{h}
\end{aligned}
$$

First excited-state configuration of helium

The first excited-state $\Psi_{a}=\frac{1}{\sqrt{2}}\left\{\Psi_{1 s}\left(r_{1}\right) \Psi_{2 s}\left(r_{2}\right)-\Psi_{2 s}\left(r_{1}\right) \Psi_{1 s}\left(r_{2}\right)\right\}$
configuration is $(1 s)^{1}(2 s)^{1}$
$\Psi_{s}=\frac{1}{\sqrt{2}}\left\{\Psi_{1 s}\left(r_{1}\right) \Psi_{2 s}\left(r_{2}\right)+\Psi_{2 s}\left(r_{1}\right) \Psi_{1 s}\left(r_{2}\right)\right\}$

- Have to make indistinguishable wave functions as sums and $\begin{aligned} & \text { functions as sums and } \\ & \text { differences of products }\end{aligned} \Psi_{a, s \text { spin }}=\frac{1}{\sqrt{2}}\{\alpha(1) \beta(2)-\beta(1) \alpha(2)\}$
- Have to pair up the antisymmetric and symmetric combinations $\quad \Psi_{5, \text { spin }}=\frac{1}{\sqrt{2}}\{\alpha(1) \beta(2)+\beta(1) \alpha(2)\}$ to make a totally antisymmetric wave function

Spin angular momentum of multi-spin states

- Operators of the total spin angular momentum of the combined system in terms of the angular momenta of the two electrons

$$
\begin{aligned}
& S^{2}=\left(\mathbf{S}_{1}+\mathbf{S}_{2}\right) \bullet\left(\mathbf{S}_{1}+\mathbf{S}_{2}\right) \\
& S_{z}=S_{12}+S_{2 z}
\end{aligned}
$$

- The linear combinations are eigenstates of the total spin angular momentum operators
$S^{2} \Psi_{a, \text { spin }}=0(0+1) \hbar^{2} \Psi_{\text {a.spin }} \quad S_{z} \Psi_{a, \text { spin }}=0 \hbar \Psi_{a, \text { spin }}$ $S^{2} \alpha(1) \alpha(2)=1(1+1) \hbar^{2} \alpha(1) \alpha(2) \quad S_{2} \alpha(1) \alpha(2)=\hbar \alpha(1) \alpha(2)$ $S^{2} \frac{1}{\sqrt{2}}\{\alpha \beta+\beta \alpha\}=1(1+1) \hbar^{2} \frac{1}{\sqrt{2}}\{\alpha+\beta \alpha\} \quad S_{2} \frac{1}{\sqrt{2}}\{\alpha \beta+\beta \alpha\}=0 \hbar \frac{1}{\sqrt{2}}\{\alpha \beta+\beta \alpha\}$ $S^{2} \beta(1) \beta(2)=1(1+1) \hbar^{2} \beta(1) \beta(2) \quad S_{2} \beta(1) \beta(2)=-\hbar \beta(1) \beta(2)$

Labeling combination spin states

- The combined spin states are eigenfunctions of the total spin squared and the z component of the total spin
- Use a superscript as a label of the total spin state

Total spatial angular momentum

- Like the spin states, the combination spatial states are eigenfunctions of the total angular momentum opertors, L^{2} and L_{z}
- These eigenstates may be labeled by the value of L
- Labels of atomic multi-electron states are capital Roman letters

Helium-atom terms

- The eigenstate notation for the two-electron helium atom is given by the total spatial angular momentum and spin
angular momentum
- Examples are given for ${ }^{\text {' }} \mathrm{s}=\frac{1}{\sqrt{2}}\left\{\Psi_{1 s}(1) \Psi_{2 s}(2)+\Psi_{2 s}(1) \Psi_{\Psi_{s}}(2)\right\} \frac{1}{\sqrt{2}}\{\alpha \beta-\beta \alpha\}$ the ground and first excited configurations
- "singlet S"
- "triplet S"

$$
{ }^{3} \mathrm{~S}=\frac{1}{\sqrt{2}}\left\{\Psi_{15}(1) \Psi_{2 s}(2)-\Psi_{2 s}(1) \Psi_{1 s}(2)\right\}\left[\begin{array}{c}
\alpha \alpha \\
\frac{1}{\sqrt{2}}\{\alpha \beta+\beta \alpha\} \\
\beta \beta
\end{array}\right]
$$

Energies of first-excited-state terms

- First-order energies determined with approximate wave

$$
E_{1 s}=E_{1 s}+E_{2 s}+J_{1 s, 2 s}+K_{1 s, 2 s}
$$

functions and the

$$
E_{3_{5}}=E_{1 s}+E_{2 s}+J_{15,2 s}-K_{1 s, 2 s}
$$ Hamiltonian operator

- Singlet and triplet energies differ because of two energy contributions from electron-electron repulsion
- Classical Coulombrepulsion integral, J
- Quantum exchange integral, K

Energies of second-excitedstate terms

- Second configuration arises from promotion $E_{i p}=E_{1 s}+E_{2 p}+J_{15,2 p}+K_{1 \mathrm{~s}, 2,}$
to a $2 p$ orbital
Singler and triplet energies differ because
of electron-electron
repulsion
- Relative energies of these terms compared to ${ }^{1} \mathrm{~S}$ and ${ }^{3} \mathrm{~S}$ depend on the sizes of $J_{1 s, 2 s}$ and $\mathrm{J}_{1 \mathrm{~s}, 2 \mathrm{p}}$

$$
\begin{aligned}
J_{1 s, 2 p} & =\frac{59}{243} Z E_{h} \\
K_{1 s, 2 p} & =\frac{112}{6561} Z E_{h}
\end{aligned}
$$

Energies of helium levels

- Energies calculated through first-order perturbation correction
- May be wrong when two levels are close in energy
- Gives relative orders
- Lowest from (1s) ${ }^{2}$
- From $1 s^{1} 2 s^{1}$
- From $1 s^{12} 2 p^{1}$
- Can build up higher

Summary

- One may calculate energies of the helium through first order with approximate wave functions
- One may label the terms that arise from various configurations by angular momentum quantum numbers
- Total orbital angular momentum
- Total spin angular momentum
- Relative energies of terms depend on the sizes of the Coulomb and exchange integrals, J and K

