



























|   | Summary                                                                                                            |
|---|--------------------------------------------------------------------------------------------------------------------|
| ۲ | One cannot solve for the helium atom's spatial states exactly                                                      |
| ۲ | Use first-order perturbation theory  Independent-electron model is solvable                                        |
|   | "Correct" the energy by integral over unperturbed states     Evaluate Coulomb integrals, J                         |
| ۲ | Still not adequate to model the experimental data<br>• Variational calculation allows a closer approach            |
|   | Major problem is "correlation energy"     Electron avoidance                                                       |
|   | <ul> <li>More sophisticated numerical solutions allow close<br/>approach to ground-state wave functions</li> </ul> |
|   | Self-consistent field     Configuration interaction                                                                |