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Physical Chemistry

Lecture 17
The Helium Atom’s Spatial States

The helium atom
Consists of a nucleus and 
two electrons
Hamiltonian has four kinds 
of terms
 Nuclear kinetic energy
 Electronic kinetic 

energy
 Nuclear-electron 

Coulombic potential 
energy

 Electron-electron 
Coulombic potential 
energy
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Center of mass separation
Focus on the relative problem
Center of mass is assumed to be at the 
nucleus
 Good approximation as nuclei get heavier
 Determine only relative energies of a single atom
 Center-of-mass problem again gives a particle-in-

a-box solution; translational energies
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Simplification of the helium-
atom problem

Consider the problem with neglect of the 
electron-electron repulsion

Decompose into two hydrogen-like problems
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Hydrogen-like energies and 
wave functions

Difference between the 
approximate helium atom 
and the hydrogen atom
 Z = 1 for hydrogen
 Z = 2 for helium

Nuclear-charge difference 
produces scaling of wave 
functions and energies
Each electron of helium is 
defined by three quantum 
numbers, but the energy 
depends on only the 
principal quantum number

),()/()( 0 lmnlnlm YaZrR r

2

2 1

2 n

EZ
E h

n 

Approximate wave functions 
and energies for helium

In the simplest approximation, wave 
functions are products of one-electron wave 
functions
Energies are sums of one-electron energies
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Independent-electron energies 
of the helium atom

Consider the state with 
lowest energy
Each electron has a 
principal quantum 
number of 1
 n1 = 1
 n2 = 1

Next highest
 n1 = 1 and n2 = 2
 n1 = 2 and n1 = 1
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Checking energies – the 
ionization potential

We measure energy 
differences
Consider the ionization process
The energy change of this 
process can be measured with 
a mass-spectrometric 
experiment
Experimental first ionization 
potential of helium is 24.6 eV
First ionization potential 
theoretically predicted to be 
much larger by this 
independent-electron 
approximation
 Must reconsider the 

approximation
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Problems with independent-
electron approximation

Neglect of electron-electron repulsion gives 
an incomplete picture of the energy situation
 Major source of error
 Model does not represent the situation accurately

Must incorporate electron-electron repulsion 
to give a “better” picture of the energy state
Can be done by several procedures
 Exact calculation – very hard
 Perturbation theory
 Variational calculation

Perturbation theory

With an approximate 
wave function, one can  
calculate an 
approximate energy
 Use independent-electron 

product wave functions
The Hamiltonian must 
include all terms
 H  =  Ha + Hb + Vee

 Vee neglected in the 
independent-electron 
calculation

First-order perturbation 
theory
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Ground-state energy of helium 
through first order

Coulomb repulsion integral, J
 Average over a known wave function of the 

Coulombic interaction 
 Can be calculated through tedious calculus
 Depends on the kinds of states involved

Total energy is a sum of the unperturbed 
energy with the first-order correction
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Ionization potential with the 
Coulomb repulsion included

The ionization 
potential is the 
measurement of the 
energy difference
With the inclusion of 
the electron 
repulsion, the 
ionization potential 
is much closer to the 
measured value eVE
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Variational principle

One can guess any 
approximate wave 
function
 Use to calculate an 

approximate energy
 Approximate energy will 

always be incorrect unless 
the true wave function is 
chosen

Variational principle
 All approximate energies 

will be higher than the exact 
energy

 Can use this to “improve” 
the wave function and the 
energy
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The approximations to the 
helium-atom energies

The improvements of 
the wave function give 
improvements of the 
energies
With modern computer-
assisted techniques, 
one gets approximate 
states that are 
extremely close to the 
exact solution of the 
problem

Summary
One cannot solve for the helium atom’s spatial 
states exactly
Use first-order perturbation theory
 Independent-electron model is solvable
 “Correct” the energy by integral over unperturbed states

 Evaluate Coulomb integrals, J
Still not adequate to model the experimental data
 Variational calculation allows a closer approach
 Major problem is “correlation energy”

 Electron avoidance
 More sophisticated numerical solutions allow close 

approach to ground-state wave functions
 Self-consistent field
 Configuration interaction


