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Physical Chemistry

Lecture 15
Angular Momentum and the Rigid 
Rotor

Angular momentum

Vector property that 
describes circular motion of 
a particle or a system of 
particles
Rigid rotor model: A particle 
of mass m fixed to a 
massless rod
Examples
 Swinging a bucket of 

water
 Movement of the Earth 

around the Sun
 L   2.5 x 1040 kg m2 s-1
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Classical constant-angular-
momentum problem

Solve for trajectories for constant angular momentum
Frequency, , must be constant
r must be constant
Constant L is provided by the fact that r and  are 
constant
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Quantum angular-momentum 
operators

Vector definitions

Expression by correspondence

Form of operators with a fixed r
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Quantum angular momentum
Commutators of operators

Can have common set of eigenstates of L2 and 
any one component
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Operators in spherical co-
ordinates

Natural system for 
describing angular 
motion is spherical co-
ordinates
Lz depends only on 
 Suggests that the wave 

functions may be 
written as a product
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Differential equations for angular-
momentum eigenstates

The z component yields 
a simple differential 
equation for m

The square of the 
angular momentum 
yields an equation for 
km ( P(cos)
 Legendre’s associated 

differential equation
 Depends on a quantum 

number, 

Solutions are a 
complete set called the 
spherical harmonic 
functions
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Angular-momentum wave 
functions

Functions of  are exponentials

Legendre polynomials

Should look familiar, as these are the angular 
parts of the hydrogenic wave functions
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 |m| P
|m| (cos )

0 0 1
1 0 cos
1 1 sin
2 0 3cos2 - 1
2 1 sin cos
2 2 sin2

Quantum rigid rotor

Hamiltonian

The Hamiltonian commutes with L2 and Lz
 The three operators have a complete set of 

eigenstates in common
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Grotrian diagram for the rigid 
rotor

Rigid rotor’s energies determined 
by the quantum number, 

Each energy level is degenerate
 States with different values of m

have the same energy
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Spin
Goudschmidt and 
Uehlenbeck proposed 
electronic “intrinsic angular 
momentum” to explain 
spectroscopic anomalies
Fundamental property of 
particle called spin
 Often labeled I or S
 Acts like other quantum 

angular momenta
 Integer or half-integer values

Dirac theory of an electron
 Consequence of relativistic 

motion of electron

PRINCIPAL SPIN QUANTUM 
NUMBERS OF PARTICLES

Electron ½

Proton ½

Neutron ½

Deuteron 1

12C 0

13C ½

23Na ½

27Al 5/2

63Cu and 65Cu 3/2

Summary
Angular momentum is quantized
 Combination of

 Rotation equation
 Legendre’s differential equation

 Restricted values of  and m
  must be a positive integer
 |m| must be less than or equal to 
 m must be an integer

Rigid rotor
 Hamiltonian is directly proportional to L2

 Same set of eigenstates
 Degenerate levels

 g = 2 + 1


