

## Angular momentum

- Vector property that describes circular motion of a particle or a system of particles
- Rigid rotor model: A particle of mass $m$ fixed to a massless rod
- Examples
- Swinging a bucket of water

$\mathbf{L}=\mathbf{r} \times \mathbf{p}$
- Movement of the Earth around the Sun
- $L \approx 2.5 \times 10^{40} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$


## Classical constant-angularmomentum problem

- Solve for trajectories for constant angular momentum
- Frequency, $\omega$, must be constant
- rmust be constant
- Constant $\mathbf{L}$ is provided by the fact that $r$ and $\omega$ are constant
$\mathbf{L}=$ constant $=m r^{2} \omega \mathbf{k}$
$\mathbf{r}(t)=r(\mathbf{i} \cos \omega t+\mathbf{j} \sin \omega t)$
$\mathbf{p}(t)=\operatorname{mr} \omega(-\mathbf{i} \sin \omega t+\mathbf{j} \cos \omega t)$


## Quantum angular-momentum

 operators- Vector definitions

$$
\begin{aligned}
& \mathbf{L}=L_{x} \mathbf{i}+L_{y} \mathbf{j}+L_{z} \mathbf{k} \\
& L^{2}=\mathbf{L} \bullet \mathbf{L}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}
\end{aligned}
$$

Expression by correspondence
$\hat{L}_{x}=-i n\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \quad \hat{L}_{y}=-i n\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right) \quad \hat{L}_{z}=-i n\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)$
$\hat{L}^{2}=\hat{L}_{x}^{2}+\hat{L}_{s}^{2}+\hat{L}_{s}^{2}$

- Form of operators with a fixed $r$

$$
\begin{aligned}
& \hat{\mathbf{L}}=-i \hbar \mathbf{r} \times \nabla \\
& \hat{L}^{2}=-\hbar^{2}(\mathbf{r} \times \nabla) \bullet(\mathbf{r} \times \nabla)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Operators in spherical Co- } \\
& \text { ordinates } \\
& \text { Natural system for } \\
& \text { describing angular } \quad \hat{L}_{x}=i \hbar\left(\sin \phi \frac{\partial}{\partial \theta}+\cot \theta \cos \phi \frac{\partial}{\partial \phi}\right) \\
& \text { motion is spherical co- } \quad \hat{L}_{v}=-i \hbar\left(\cos \phi \frac{\partial}{\partial \theta}-\cot \theta \sin \phi \frac{\partial}{\partial \phi}\right. \\
& \text { ordinates } \\
& \text { L } L_{z} \text { depends only on } \phi \quad \hat{L}_{z}=-i \hbar \frac{\partial}{\partial \phi} \\
& \text { - Suggests that the wave } \\
& \text { functions may be } \\
& \text { written as a product } \quad \hat{L}^{2}=-\hbar^{\hbar}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta}\right. \\
& \Psi_{k m}(\theta, \phi)=\Theta_{k m}(\theta) \Phi_{m}(\phi)
\end{aligned}
$$

## Differential equations for angularmomentum eigenstates

- The z component yields a simple differential equation for $\Phi_{m}$
- The square of the angular momentum
yields an equation for
$\Theta_{\mathrm{km}}(\equiv \mathrm{P}(\cos \theta)$
- Legendre's associated
differential equation
- Depends on a quantum number, $l$
$Y_{\ell m}(\theta, \phi)=A_{\ell m} P_{\ell}^{|m|}(\cos \theta) \Phi_{m}(\phi)$
- Solutions are a where complete set called the $k=\ell(\ell+1)$ and $\ell=0,1,2$,. spherical harmonic functions


## Angular-momentum wave functions

- Functions of $\phi$ are exponentials

$$
\Phi_{m}(\phi)=\frac{1}{\sqrt{2 \pi}} \exp (i m \phi)
$$

Legendre polynomials


Should look familiar, as these are the angular parts of the hydrogenic wave functions

## Quantum rigid rotor

$$
\text { Hamiltonian } \quad \hat{H}=\frac{1}{2 m r_{0}^{2}} \hat{L}^{2}
$$

- The Hamiltonian commutes with $L^{2}$ and $L_{z}$
- The three operators have a complete set of eigenstates in common

$$
\begin{aligned}
& \hat{H} Y_{l m}(\theta, \phi)=E_{\ell n} Y_{l m}(\theta, \phi) \\
& \frac{1}{2 m r_{0}^{2}} \hat{L}^{2} Y_{l m}(\theta, \phi)=\frac{1}{2 m r_{0}^{2}} \ell(\ell+1) \hbar^{2} Y_{t m}(\theta, \phi) \\
& E_{\ell m}=\frac{\hbar^{2}}{2 m r_{0}^{2}} \ell(\ell+1)
\end{aligned}
$$



