Physical Cl	nemistry	
Lecture 13		
	of Wave Functio ex Problems	ons;

	Symmetry and degeneracy
٠	For the particle in a 3-D box, the energies depend on the size of the box in each direction
٠	When $a = b \neq c$, the states $(1,2,n_z)$ and $(2,1,n_z)$ necessarily have the same energy
٠	Symmetry increases the number of states a a particular energy
	 Degeneracy increases because of symmetry Very important relation used to determine symmetry properties of systems

	Quantum model problems				
System	Model	Potential Energy	Differential Equation	Solutions	
Gas molecule	Particle in a Box	Either 0 or ∞	Bounded wave equations	Sines and cosines	
Bond vibration	Harmonic oscillator	(k/2)(r-r _{eq}) ²	Hermite's equation	Hermite polynomial	
Molecular rotation	Rigid rotor	Either 0 or ∞	Spherical harmonic (angular momentum)	Spherical harmonic functions	
Hydrogen atom	Central-force problem	-Ze²/r	Legendre's and Laguerre's equations	Legendre polynomials, Laguerre polynomials, spherical harmonic functions	
Complex systems	Multi-mode systems	Complex	Complicated equations	Complex products o	

Summary		
A syst on it	em's wave function provides all possible information	
The w prope	vave function provides probabilities for values of rties	
 Bo 	rn (Copenhagen) interpretation	
• W	nen a system is in an eigenstate, the value is exact	
	Repeated measurements give the same result for the property's value	
	ample: particle in a 1-D box	
	Probability of position found from the square of the normalized wave function for that position	
	States are not eigenfunctions of position	
	Expectation value for the position by averaging over probability Energy eigenstate is also an eigenstate of $p_{\rm x}^{2}$	
	le in a 3-D box	
	ample of decomposition of a complex problem into simpler oblems	
- Sv	mmetry and degeneracy of energy levels	