

Born's interpretation of the wave function

- It is not possible to measure all properties of a quantum system precisely
- Max Born suggested that the wave function was related to the probability that an observable has a specific value.
- Often called the Copenhagen interpretation

A parameter of interest is position (x, y, z)

$$
\Psi^{*}(x, y, z) \Psi(x, y, z) d^{3} \mathbf{r} \equiv P(x, y, z) d^{3} \mathbf{r}
$$

Requirements on a wave function

*To be consistent with the Born interpretation, a wave function has to have certain characteristics.

- Square integrable over all space. (In this way it can be normalized and represent probability.)
- Single-valued (so that the probability at any point is unique)
- Continuous at all points in space.
- First derivative must be continuous at all points where the potential is continuous.

Example: particle in a 1-D box

Expectation values for a

 particle in a 1-D box- Expectation value of the momentum

$$
<p_{x}>=-\frac{2 i \hbar}{a} \int_{0}^{a} \sin \left(\frac{n \pi x}{a}\right) \frac{d}{d x} \sin \left(\frac{n \pi x}{a}\right) d x
$$

$$
=-\frac{2 i \hbar n \pi}{a^{2}} \int_{0}^{a} \sin \left(\frac{n \pi x}{a}\right) \cos \left(\frac{n \pi x}{a}\right) d x
$$

$$
=0
$$

- Expectation value of

$$
\left\langle p_{x}^{2}\right\rangle=-\frac{2 \hbar^{2}}{a} \int_{0} \sin \left(\frac{n \pi x}{a}\right) \frac{d^{2}}{d x^{2}} \sin \left(\frac{n \pi x}{a}\right) d x
$$ the square of the momentum

$=\frac{2 \hbar^{2} n \pi}{a^{2}} \int_{0}^{n t \sin ^{2}} y d y$

- An eigenvalue (!!!)
- Must be an eigenstate
$=\frac{n^{2} \pi^{2} \hbar^{2}}{a^{2}}$ of p_{x}^{2}

Copenhagen interpretation for an arbitrary (mixed) state

- Particle in a 1D box in an arbitrary state
- ψ written as a sum of the energy eigenstates
- The expectation value of the energy of the $\begin{aligned} & \text { The expectation value } \\ & \text { of the energyof the } \\ & \text { particle in this state is a }\end{aligned}{ }^{\langle E\rangle}=\prod_{0}^{\prime} \psi^{\prime}(x) H \mu(x) d x$

- Importantly, if one determines the
expectation value by repeated measurements one ONLY finds among the measurements elements of $\left\{\mathrm{E}_{\mathrm{k}}\right\}$

$$
\psi(x)=\sum_{n} c_{n} \sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)
$$

$=\sum \sum_{k} \sigma_{k} E_{k} \delta_{\beta_{k}}$

Particle in a 3-D box

- The actual space in which we live is three-dimensional.
- General problem of a particle in a 3-D box is appropriate to gas molecules
- Example of a complex problem decomposed into a simpler problem
- Hamiltonian

$$
H=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)
$$

Separation of variables

- There is only one way for the following kind of equation to be generally satisfied

$$
\begin{aligned}
& f(x)=g(y) \\
& f(x)=C \\
& g(y)=C
\end{aligned}
$$

- Each function must be equal to a constant, independent of either x or y

Application to the particle in a 3-D box

- Overall problem may be separated into three 1D problems
- Hamiltonian must be a sum of Hamiltonians
- Each depends on a single independent variable
- The wave function is a product of wave functions for each mode
- The energy is a sum of the energies of the modes
$H(x, y, z) \Psi(x, y, z)=E \Psi(x, y, z)$

$$
H_{x}(x) \Psi_{x}(x)=E_{x} \Psi_{x}(x)
$$

$$
H_{y}(y) \Psi_{y}(y)=E_{y} \Psi_{y}(y)
$$

$$
H_{z}(z) \Psi_{z}(z)=E_{z} \Psi_{z}(z)
$$

$H(x, y, z)=H_{x}(x)+H_{y}(y)+H_{z}(z)$
$E=E_{x}+E_{y}+E_{z}$
$\Psi(x, y, z)=\Psi_{x}(x) \Psi_{y}(y) \Psi_{z}(z)$

Solutions to the particle in a 3-D box

- Each mode is exactly like the particle in a 1-D box
- Solutions and energies of these modes are known
-Overall solution
$\Psi_{n, n_{n}, n_{2}}(x, y, z)=\sqrt{\frac{2^{3}}{a b c}} \sin \left(\frac{n_{x} \pi x}{a}\right) \sin \left(\frac{n_{y} \pi y}{b}\right) \sin \left(\frac{n_{2} \pi z}{c}\right)$
$E_{n, n, n_{2}}=\frac{h^{2}}{8 m}\left(\frac{n_{x}^{2}}{a^{2}}+\frac{n_{y}^{2}}{b^{2}}+\frac{n_{z}^{2}}{c^{2}}\right)$

Probability plots for a particle in a 2-D box

- Upper graph
- $\mathrm{n}_{\mathrm{x}}=1$
- $\mathrm{n}_{\mathrm{y}}=1$
- Lower graph
- $\mathrm{n}_{\mathrm{x}}=1$
- $n_{y}=2$
- Note the symmetry of the graphs and how it changes depending on the relationship of the eigenvalues

Symmetry and degeneracy

- For the particle in a 3-D box, the energies depend on the size of the box in each direction
- When $\mathrm{a}=\mathrm{b} \neq \mathrm{c}$, the states $\left(1,2, \mathrm{n}_{\mathrm{z}}\right)$ and $\left(2,1, n_{z}\right)$ necessarily have the same energy Symmetry increases the number of states at a particular energy
- Degeneracy increases because of symmetry
- Very important relation used to determine symmetry properties of systems

Quantum model problems

System	Model	Potential Energy	Differential Equation	Solutions
Gas molecule	$\begin{aligned} & \text { Particle in a } \\ & \text { Box } \end{aligned}$	Either 0 or ∞	Bounded wave equations	Sines and cosines
Bond vibration	Harmonic oscillator	(k/2)(r- $\left.\mathrm{req}_{\text {eq }}\right)^{2}$	Hermite's equation	Hermite polynomials
Molecular rotation	Rigid rotor	Either 0 or ∞	Spherical harmonic (angular momentum)	Spherical harmonic functions
Hydrogen atom	Central-force problem	$-2 e^{2 / r}$	Legendre's and Laguerre's equations	Legendre polynomials, Laguerre polynomials, spherical harmonic functions
Complex systems	Multi-mode systems	Complex	Complicated equations	Complex products of functions

Summary

A system's wave function provides all possible information on it

- The wave function provides probabilities for values of properties
- Born (Copenhagen) interpretation
- When a system is in an eigenstate, the value is exact
- Repeated measurements give the same result for the property's
- Example: particle in a 1-D box
- Probability of position found from the square of the normalized Probability of position found fro
- States are not eigenfunctions of position
- Expectation value for the position by averaging over probability - Energy eigenstate is also an eigenstate of p_{x}^{2}
- Particle in a 3-D box
- Example of decomposition of a complex problem into simple problems
- Symmetry and degeneracy of energy levels

