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Physical Chemistry

Lecture 13
The Meaning of Wave Functions; 
Solving Complex Problems

Born’s interpretation of the 
wave function

It is not possible to measure all properties of 
a quantum system precisely
Max Born suggested that the wave function 
was related to the probability that an 
observable has a specific value.
Often called the Copenhagen interpretation
A parameter of interest is position (x,y,z)
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Requirements on a wave 
function

To be consistent with the Born 
interpretation, a wave function has to 
have certain characteristics.
 Square integrable over all space. (In this way it 

can be normalized and represent probability.)
 Single-valued (so that the probability at any point 

is unique)
 Continuous at all points in space.
 First derivative must be continuous at all points 

where the potential is continuous.

Example: particle in a 1-D box

Wave functions 

Square of wave 
functions 

Expectation values for a 
particle in a 1-D box

Expectation value of 
the position

Expectation value of 
the square of the 
position
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Expectation values for a 
particle in a 1-D box

Expectation value of 
the momentum

Expectation value of 
the square of the 
momentum
 An eigenvalue (!!!)
 Must be an eigenstate 
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Copenhagen interpretation for an 
arbitrary (mixed) state

Particle in a 1D box in 
an arbitrary state
  written as a sum of the 

energy eigenstates
The expectation value 
of the energy of the 
particle in this state is a 
sum of contributions
 Importantly, if one 

determines the 
expectation value by 
repeated measurements, 
one ONLY finds among 
the measurements 
elements of {Ek} 
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Particle in a 3-D box

The actual space in which we live is 
three-dimensional.
General problem of a particle in a 3-D 
box is appropriate to gas molecules
Example of a complex problem 
decomposed into a simpler problem
Hamiltonian
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Separation of variables
There is only one way for the following kind 
of equation to be generally satisfied

Each function must be equal to a constant, 
independent of either x or y

Cyg

Cxf

ygxf
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Application to the particle in a 
3-D box

Overall problem may be 
separated into three 1-
D problems
Hamiltonian must be a 
sum of Hamiltonians
 Each depends on a single 

independent variable
The wave function is a 
product of wave 
functions for each mode
The energy is a sum of 
the energies of the 
modes
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Solutions to the particle in a 
3-D box

Each mode is exactly like the particle in 
a 1-D box
Solutions and energies of these modes 
are known
Overall solution
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Probability plots for a particle 
in a 2-D box

Upper graph
 nx = 1
 ny = 1

Lower graph
 nx = 1
 ny = 2

Note the symmetry of the 
graphs and how it changes 
depending on the 
relationship of the 
eigenvalues
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Symmetry and degeneracy
For the particle in a 3-D box, the energies 
depend on the size of the box in each 
direction
When a = b  c, the states (1,2,nz) and 
(2,1,nz) necessarily have the same energy
Symmetry increases the number of states at 
a particular energy
 Degeneracy increases because of symmetry
 Very important relation used to determine 

symmetry properties of systems

Quantum model problems
System Model

Potential 
Energy

Differential 
Equation

Solutions

Gas molecule
Particle in a 
Box

Either 0 or 
Bounded 
wave 
equations

Sines and cosines

Bond vibration
Harmonic 
oscillator

(k/2)(r-req)2 Hermite’s 
equation

Hermite polynomials

Molecular rotation Rigid rotor
Either 0 or 

Spherical 
harmonic 
(angular 
momentum)

Spherical harmonic 
functions

Hydrogen atom
Central-force 
problem

-Ze2/r

Legendre’s 
and 
Laguerre’s 
equations

Legendre 
polynomials,
Laguerre 
polynomials, 
spherical harmonic 
functions

Complex systems
Multi-mode 
systems

Complex
Complicated 
equations

Complex products of 
functions

Summary
A system’s wave function provides all possible information 
on it
The wave function provides probabilities for values of 
properties
 Born (Copenhagen) interpretation
 When a system is in an eigenstate, the value is exact

 Repeated measurements give the same result for the property’s 
value

 Example: particle in a 1-D box
 Probability of position found from the square of the normalized 

wave function for that position
 States are not eigenfunctions of position
 Expectation value for the position by averaging over probability
 Energy eigenstate is also an eigenstate of px
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Particle in a 3-D box
 Example of decomposition of a complex problem into simpler 

problems
 Symmetry and degeneracy of energy levels


