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Physical Chemistry

Lecture 11
Waves, Matrices, Operators, and 
Eigenvalue Equations

Waves

λ0 - wavelength in vacuum
n(λ0) - refractive index of the medium, 

which varies with wavelength (dispersion)

Wave moving through space

Dispersion relation:

Not simple, because v is a function of 
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Waves in complex notation

Wave equation

Matrices

Matrix:  an array of 
numbers or 
functions.
Position in the array 
is important
 Labeling of matrix 

elements requires 
two indices

Rank – the number 
of rows or columns


















987

654

321

A


















333231

232221

131211

aaa

aaa

aaa

A

Special types of matrices
Square matrix 
 Row rank equal to column rank

Symmetric matrix S
 Off-diagonal elements across 

principal diagonal are equal
Diagonal matrix D
 All off-diagonal elements are 

zero
Real matrix R
 All elements are real numbers 

or real functions
Complex matrix C
 Some elements are complex 

numbers or functions
Transpose of a matrix
 A matrix formed from another 

by exchanging elements across 
the principal diagonal
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Matrix mathematics

Equality

Additivity and subtraction

Multiplication by a scalar

ijij ba  BA

ijijij bac  BAC

ijij kbak  BA

Matrix multiplication
Multiplication by a matrix is defined as

Must be commensurate for multiplication
 Row rank of first must equal column rank of 

second
Example

Multiplication is not necessarily commutative
 Order matters
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Direct product
Another kind of matrix 
multiplication
Yields an expanded 
matrix

Example direct product
























BB

BB

BA 2221

1211

aa

aa






































41239

8866

2613

4422

13

22

43

21
BABA

Inverse matrices
Division of matrices not defined
Sometimes have the situation

A is called the left inverse of B,  and B
is called the right inverse of A
1 is known as the identity matrix
 Analogous to the number 1 in scalar 

algebra
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Orthogonal and unitary matrices
The relation between a 
matrix and its inverse 
specifies its type.
The inverse of an 
orthogonal matrix is its 
transpose.
The inverse of a unitary
matrix is the complex 
conjugate of its 
transpose.
Orthogonal and unitary 
matrices have identical 
left and right inverses.
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Operations in matrix algebra

Similarity
 Two matrices are said to 

be similar if there exists 
multiplication by a 
unitary matrix and it 
inverse that transforms 
one into the other

Real square matrices 
can be similar to a real 
diagonal matrix
 Finding the unitary 

matrix (and its inverse) is 
a means of diagonalizing
the matrix
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Similarity and eigenvalues
Similarity to a diagonal matrix allows the 
determination of matrix eigenvalues
 Nonzero elements of the diagonal matrix are said 

to be the eigenvalues of the original matrix
Diagonalization of a matrix
 Easily done with computers
 Gives associated eigenvectors in terms of basis 

vectors of the matrix
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Operators
Many processes in mathematics are thought of as 
operations.
 Addition, subtraction, multiplication, division

Operation is a general term that encompasses other 
actions.
 Rotation of a chair
 Replacement of a letter by a number
 Removing all vowels from a word to create a new 

sequence of just consonants
Every operation has three parts
 Operator
 Operand
 Result

Operator algebra

Equality

Addition
 Commutativity
 Distributivity

Multiplication
 Order-sensitive
 May be noncommutative
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Operators in mathematics
Operators change functions into other 
functions

Example 1: the derivative operator, D

Example 2: the translation operator, Th
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Commutators of operators

Must establish relations between 
operators
One relationship – commutativity
 Defined by commutator

Example:
   fABfBAfBA ˆˆˆˆ]ˆ,ˆ[ 
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Operators and eigenfunctions
Some operations on some functions give the 
following special result

Functions with this property are said to be 
eigenfunctions of the operator
The constant k is the eigenvalue associated 
with the eigenfunction
This is called an eigenvalue equation
If O contains derivative operators, the 
eigenvalue equation is a differential equation
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Eigenvalue equations in 
physics

Represent measurable 
parameters in quantum 
mechanics with operators
Represent possible values 
with eigenvalues
Energy -- Schroedinger’s 
equation (contains the 
Hamiltonian operator)
Momentum (contains the 
momentum operator)
The complete set of 
eigenfunctions of an 
operator and the associated 
eigenvalues represent all 
possible states of the 
system.
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Operators for physical 
variables

The correspondence principle
 An operator for a physical parameter is found by 

substitution into the classical expression
 For r (position), multiplication by r
 For p (momentum), the operator is -i

The energy operator (the Hamiltonian)
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Matrix eigenvalue equation
Matrix equation equivalent to 
Schroedinger’s equation

Diagonalization of H gives the 
eigenvalues and associated 
eigenvectors
 The components of c for each eigenvalue 

give the associated eigenvector in terms of 
the basis vectors relative to which the 
matrix was defined
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Summary
Matrices are ordered arrays whose algebra is 
useful in quantum mechanics
 Algebraic properties  are somewhat different from scalar 

algebra, e.g. matrix multiplication may not be commutative
Operators are another mathematical device whose 
algebra is useful in quantum mechanics
 Correspondence to properties of a physical system
 Operations may not commute

Eigenvalue equations
 Define functions that have a special relation to a 

particular operator
 Eigenfunctions are associated with specific constants, 

eigenvalues
 Schroedinger’s equation is associated with finding 

quantum states of constant energy


