

Dispersion relation:

$$
k=\frac{2 \pi}{\lambda}=\frac{\omega}{v}
$$

Not simple, because v is a function of ω

Waves in complex notation

Matrices

Matrix: an array of numbers or
functions.

- Position in the array is important
- Labeling of matrix elements requires two indices
- Rank - the number of rows or columns

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

$\mathbf{A}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$

Special types of matrices

- Square matrix
- Symmetric matrix \mathbf{S}.
- Off-diagonal elements across
principal diagonal are equal
- Diagonal matrix D
- All off-diagonal elements are
zero
- Real matrix \mathbf{R}
- All elements are real numbers
- Complex matrix \mathbf{C}
- Some elements are complex
- Some elements are complex
- Transpose of a matrix
- A matrix formed from another
by exchanging elements across the principal diagonal
$\mathbf{S}=\left[\begin{array}{ccc}a_{11} & A & B \\ A & a_{22} & C \\ B & C & a_{33}\end{array}\right]$
$\mathbf{D}=\left[\begin{array}{ccc}a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33}\end{array}\right]$
$\mathbf{R}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
$\mathbf{C}(x, y)=\left[\begin{array}{ccc}1 & x+i y & 25 \\ x-i y & 3+2 i & 44 \\ 6 & 3 & x y\end{array}\right]$

Matrix mathematics

- Equality

$$
\mathbf{A}=\mathbf{B} \Leftrightarrow a_{i j}=b_{i j}
$$

- Additivity and subtraction

$$
\mathbf{C}=\mathbf{A} \pm \mathbf{B} \Leftrightarrow c_{i j}=a_{i j} \pm b_{i j}
$$

- Multiplication by a scalar

$$
\mathbf{A}=k \mathbf{B} \Leftrightarrow a_{i j}=k b_{i j}
$$

Matrix multiplication

- Multiplication by a matrix is defined as
$\mathbf{C}=\mathbf{A} \bullet \mathbf{B} \Leftrightarrow c_{i j}=\sum_{k} a_{i k} b_{k j}$
- Must be commensurate for multiplication
- Row rank of first must equal column rank of second
- Example

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{lll}
9 & 8 & 7 \\
6 & 5 & 4 \\
3 & 2 & 1
\end{array}\right]=\left[\begin{array}{ccc}
30 & 24 & 18 \\
84 & 69 & 54 \\
138 & 114 & 90
\end{array}\right]
$$

- Multiplication is not necessarily commutative
- Order matters

$$
\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}
$$

Direct product

- Another kind of matrix multiplication
- Yields an expanded matrix

$$
\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{ccc}
a_{11} \mathbf{B} & a_{12} \mathbf{B} & \cdots \\
a_{21} \mathbf{B} & a_{22} \mathbf{B} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

- Example direct product
$\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{ll}2 & 2 \\ 3 & 1\end{array}\right] \Rightarrow \mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{llll}2 & 2 & 4 & 4 \\ 3 & 1 & 6 & 2 \\ 6 & 6 & 8 & 8 \\ 9 & 3 & 12 & 4\end{array}\right]$

Orthogonal and unitary matrices

```
- The relation between a matrix and its inverse specifies its type.
Orthogonal matrix
\(\mathbf{O} \cdot \mathbf{O}^{-1}=\mathbf{1}\) and \(\mathbf{O}^{-1}=\mathbf{O}^{\mathrm{T}}\)
- The inverse of an orthogonal matrix is its transpose.
- The inverse of a unitary matrix is the complex Unitary matrix conjugate of its transpose.
\(\mathbf{U} \cdot \mathbf{U}^{-1}=\mathbf{1}\) and \(\mathbf{U}^{-1}=\left(\mathbf{U}^{\mathrm{T}}\right)^{*}\)
- Orthogonal and unitary matrices have identical left and right inverses.
```


Operations in matrix algebra

- Similarity
- Two matrices are said to be similar if there exists multiplication by a unitary matrix and it inverse that transforms one into the other
- Real square matrices can be similar to a real diagonal matrix
- Finding the unitary matrix (and its inverse) is $\mathbf{R} \xrightarrow{s} \mathbf{D}$ a means of diagonalizing the matrix
$\mathbf{A} \xrightarrow{s} \mathbf{B}$
if
$\mathbf{B}=\mathbf{U} \bullet \mathbf{A} \bullet \mathbf{U}^{-1}$

Similarity and eigenvalues

- Similarity to a diagonal matrix allows the determination of matrix eigenvalues
- Nonzero elements of the diagonal matrix are said to be the eigenvalues of the original matrix
- Diagonalization of a matrix
- Easily done with computers
- Gives associated eigenvectors in terms of basis vectors of the matrix

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \xrightarrow{s}\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]
$$

Operators

- Many processes in mathematics are thought of as operations.
- Addition, subtraction, multiplication, division
- Operation is a general term that encompasses other actions.
- Rotation of a chair
- Replacement of a letter by a number
- Removing all vowels from a word to create a new sequence of just consonants
- Every operation has three parts
- Operator
- Operand
- Result

Operator algebra

Equality $\hat{O}_{1}=\hat{O}_{2} \Leftrightarrow\left\{\begin{array}{l}\hat{O}_{1} f=g \\ \hat{O}_{2} f=g\end{array}\right\}$

- Addition
- Commutativity
$\left(\hat{O}_{1}+\hat{O}_{2}\right) f=\hat{O}_{1} f+\hat{O}_{2} f$
- Distributivity $\hat{O}(f+g)=\hat{O} f+\hat{O} g$

Multiplication

- Order-sensitive
$\left(\hat{O}_{1} \bullet \hat{O}_{2}\right)_{f}=\hat{O}_{1}\left(\hat{O}_{2} f\right)$
- May be noncommutative

$$
\hat{O}_{1} \bullet \hat{O}_{2} \neq \hat{O}_{2} \bullet \hat{O}_{1}
$$

Operators in mathematics

\checkmark Operators change functions into other functions

$$
\hat{O} f(x, y, z)=g(x, y, z)
$$

- Example 1: the derivative operator, D

$$
\hat{D}\left(x^{2}+x+2\right)=2 x+1
$$

Example 2: the translation operator, T_{h}
$\hat{T}_{h}\left(x^{2}+x+2\right)=(x+h)^{2}+(x+h)+2$

$$
=x^{2}+(2 h+1) x+h^{2}+h+2
$$

Commutators of operators

Must establish relations between operators

- One relationship - commutativity
- Defined by commutator
$[\hat{A}, \hat{B}] f=\hat{A}(\hat{B} f)-\hat{B}(\hat{A} f)$
Example:

$$
\begin{aligned}
& {[\hat{x}, \hat{x}]=0} \\
& {\left[\hat{x}, \frac{d}{d x}\right]=-1}
\end{aligned}
$$

Operators and eigenfunctions

- Some operations on some functions give the following special result

$$
O f(x, y, z)=k f(x, y, z)
$$

- Functions with this property are said to be eigenfunctions of the operator
- The constant k is the eigenvalue associated with the eigenfunction
- This is called an eigenvalue equation
- If O contains derivative operators, the eigenvalue equation is a differential equation

$$
\frac{d}{d x} f_{k}=k f_{k}
$$

Eigenvalue equations in physics

- Represent measurable parameters in quantum mechanics with operators
- Represent possible values with eigenvalues
- Energy -- Schroedinger's equation (contains the Hamiltonian operator)
- Momentum (contains the momentum operator)
- The complete set of eigenfunctions of an operator and the associated eigenvalues represent all possible states of the system.
$\hat{H} \Psi_{k}=E_{k} \Psi_{k}$
$\hat{p} \psi_{k}=p_{k} \psi_{k}$
$\hat{S} Y_{k}=p_{k} \psi_{k}$

Operators for physical variables

- The correspondence principle
- An operator for a physical parameter is found by substitution into the classical expression
- For \mathbf{r} (position), multiplication by \mathbf{r}
- For \mathbf{p} (momentum), the operator is $-i \hbar \nabla$
- The energy operator (the Hamiltonian)
$H=K E+P E$

$$
\Rightarrow \hat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})
$$

$=\frac{p^{2}}{2 m}+V(\mathbf{r})$

