Physical Chemistry	
Lecture 11 Waves, Matrices, Operators, and Eigenvalue Equations	

Matri	x	m	ul	tiļ	oli	Ca	atio	on		
 Multiplication by 	y a r	nat	rix	is d	lefir	ned	as			
$\mathbf{C} = \mathbf{A}$	• B		⇔	С	ij	=	Σ	$a_{ik}b_{kj}$		
 Must be comme Row rank of second 	ensu first	rate	e fo ust	r m equ	ulti Jal (plic colu	k atioi Imn	n rank o	f	10]
Example	4	2 5	3 6	6	8 5	4	=	30 84	24 69	18 54
	[7	8	9_	[3	2	1_		[138	114	90]
 Multiplication is Order matters 	not	ne	ces	A		:om B	mut ≠	ative B•	A	

DIF	ect	proc	iuci	-				
 Another kind of m multiplication 	atrix			$\begin{bmatrix} a_{11} \end{bmatrix}$	B	a ₁₂ .	B	••••
 Yields an expande matrix 	d	A⊗B	=	$\begin{bmatrix} a_{21} \\ \vdots \end{bmatrix}$	B	$a_{22} \\ \vdots$	B	
Example direct pro	oduct							
					2	2	4	4
[1 2] B	2	2		р	3	1	6	2
$\mathbf{A} = \begin{bmatrix} \mathbf{B} \\ 3 & 4 \end{bmatrix}$	= 3	$1 \rightarrow$	A⊗	D =	6	6	8	8
					9	3	12	4

)pera	tor al	gebr	а	
Equality	$\hat{O}_1 = 0$	$\hat{O}_2 \Leftrightarrow \left\{ \left. \left. \begin{array}{c} \left. $	$ \hat{O}_1 f = \\ \hat{O}_2 f = $	$\left. \begin{array}{c} g\\g \end{array} \right\}$	
 Addition Commu Distribu 	ıtativity ıtivity	$ \begin{array}{c} \left(\hat{O}_1 + \hat{O}_2 \right) \\ \hat{O} \left(f + g \right) \end{array} $	$f = 0$ $f = \hat{O}_{j}$	$\hat{D}_1 f + \hat{O}_2 f$ $f + \hat{O}g$	
 Multiplica Order-s May be 	ation ensitive noncomr	nutative	$(\hat{o}_1 \bullet \hat{o})$ $\hat{o}_1 \bullet \hat{o}$	$(\hat{D}_2)f = \hat{O}_1 \bullet f$	$\hat{O}_2 f$

Operators in mathematics
 Operators change functions into other functions
$\hat{O} f(x, y, z) = g(x, y, z)$
◆Example 1: the derivative operator, D
$\hat{D}\left(x^2 + x + 2\right) = 2x + 1$
\clubsuit Example 2: the translation operator, T_h
$\hat{T}_{h}(x^{2}+x+2) = (x+h)^{2} + (x+h) + 2$ = $x^{2} + (2h+1)x + h^{2} + h + 2$

Eigenvalue e phys	quat sics	ior	ns in	
 Represent measurable parameters in quantum mechanics with operators Represent possible values with eigenvalues Energy Schroedinger's equation (contains the Hamiltonian operator) 	$\hat{H}\Psi_k$		$E_k \Psi_k$	
 Momentum (contains the momentum operator) The complete set of eigenfunctions of an operator and the associated eigenvalues represent all possible states of the system. 	ŶΨ _k		$p_k \psi_k$	

Summary
 Matrices are ordered arrays whose algebra is useful in quantum mechanics
 Algebraic properties are somewhat different from scalar algebra, e.g. matrix multiplication may not be commutative
 Operators are another mathematical device whose algebra is useful in quantum mechanics
Correspondence to properties of a physical system Operations may not commute
 Eigenvalue equations
 Define functions that have a special relation to a particular operator
 Eigenfunctions are associated with specific constants, eigenvalues
 Schroedinger's equation is associated with finding quantum states of constant energy