Physica	al Chem	istry	
Lecture 1	0		
	tics of Qua	ntum	

, 		in pro	
 Particle in gravitational field along the z direction 	<i>H</i> =	<i>K</i> . <i>E</i> . +	1 1 1 1
Kinetic energy = p ² /2m		$\frac{p_x^2 + p_y^2 + p_y^2}{2m}$	p_z^2
♦ Potential energy = mgz		2m	+ mgz
 Canonical equations give equations of motion directly 	∂H	dz	n
 Equations of motion unectry Equations for x and z motion shown 	$\frac{\partial H}{\partial p_z}$	$= \frac{dz}{dt} =$	$\frac{P_z}{m}$
 Equation for y motion similar to x motion 	$\frac{\partial H}{\partial z}$	$= -\frac{dp_z}{dt}$	= mg
 Equations for trajectories can be solved directly by 	$\frac{\partial H}{\partial H}$	$= \frac{dx}{dt} =$	$\frac{p_x}{m}$
integration of these equations	∂p_x	dt	m

	Cons	erve	ed quantities
	ntities ti served	hat do	o not change in time are
Exar	mple fro	m the	gravitational-field problem
	$\frac{dp_x}{dt} =$	$0 \Rightarrow$	p_x is a conserved quantity
			p_y is a conserved quantity
			p_z is not conserved

