

Classical mechanics and states

- In mechanics, one describes
- Where particles are
- Where particles are going subject to forces
- The state of a system is completely defined by the positions and momenta of all particles -- the trajectories
- Everything is absolutely determined by forces and initial conditions

$v(t)=v(0)+\frac{1}{m} \int_{0}^{t} F\left(t^{\prime}\right) d t^{\prime}$
$r(t)=r(0)+\int_{0}^{t} v\left(t^{\prime}\right) d t^{\prime}$

Hamiltonian mechanics

- Newton's mechanics (which most of you learned in physics) does not show clearly the connection to quantum mechanics
- Hamiltonian mechanics (developed by Sir William Rowan Hamilton) is convenient and shows the connection
- Hamiltonian function
- Energy as a function of position and momentum of particles
- Emphasizes the importance of energy, rather than forces, in classical mechanics

Finding the Hamiltonian

 function of a system- Express energy as a function of momenta and co-ordinates only
- Example: A particle in a Morse potential along the x direction of a co-ordinate system
$V_{\text {Morse }}(x)=D_{e}\left[1-\exp \left(-\beta\left(x-x_{e}\right)\right]^{2}\right.$

$$
\begin{aligned}
H & =T+V \\
& =\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)+D_{e}\left[1-\exp \left(-\beta\left(x-x_{e}\right)\right)\right]^{2}
\end{aligned}
$$

Hamilton's canonical equations

- Canonical equations give the equations of motion of a conservative system

$$
\frac{\partial H}{\partial p_{k}}=\frac{d x_{k}}{d t} \text { and } \frac{\partial H}{\partial x_{k}}=-\frac{d p_{k}}{d t}
$$

- Change of a parameter defined in terms of the Poisson bracket

$$
\frac{d A}{d t}=\{A, H\}=\sum_{k}\left(\frac{\partial A}{\partial x_{k}} \frac{\partial H}{\partial p_{k}}-\frac{\partial A}{\partial p_{k}} \frac{\partial H}{\partial x_{k}}\right)
$$

Example Hamiltonian problem

- Particle in gravitational field along the z direction
- Kinetic energy $\equiv p^{2} / 2 m$
- Potential energy $=\mathrm{mgz}$
- Canonical equations give equations of motion directly
- Equations for x and z motion
shown
- Equation for y motion similar to x motion
- Equations for trajectories can be solved directly by
integration of these equations
- Equivalent to Newton's method
- More general, and more useful in complex systems
$H=K . E .+P . E$. $=\frac{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}{2 m}+m g z$
$\frac{\partial H}{\partial p_{z}}=\frac{d z}{d t}=\frac{p_{z}}{m}$
$\frac{\partial H}{\partial z}=-\frac{d p_{z}}{d t}=m g$
$\frac{\partial H}{\partial p_{x}}=\frac{d x}{d t}=\frac{p_{x}}{m}$
$\frac{\partial H}{\partial x}=-\frac{d p_{x}}{d t}=0$

Conserved quantities

Quantities that do not change in time are conserved

- Example from the gravitational-field problem

$$
\begin{aligned}
& \frac{d p_{x}}{d t}=0 \Rightarrow p_{x} \text { is a conserved quantity } \\
& \frac{d p_{y}}{d t}=0 \Rightarrow p_{y} \text { is a conserved quantity } \\
& \frac{d p_{z}}{d t} \neq 0 \Rightarrow p_{z} \text { is not conserved }
\end{aligned}
$$

- Also called constants of motion

Co-ordinate systems

- Positions defined
relative to a co-ordinate system
- Cartesian co-ordinates - (x, y, z)
- Spherical polar coordinates
- (r, $\theta, \phi)$
- Cylindrical coordinates
- (ρ, ϕ, z)
- Confocal elliptical coordinates
$\because(\mu, v, \phi)$
 co(ρ, ϕ, z)

Volume elements for integration

- In the cartesian representation
- $d V=d x d y d z$
- All space
- $-\infty \leq x \leq \infty$
- $-\infty \leq y \leq \infty$
- $-\infty \leq z \leq \infty$
- In the spherical polar representation
- $d V=r^{2} d r \sin \theta d \theta d \phi$
- All space
- $0 \leq r \leq \infty$
- $0 \leq \theta \leq \pi$
- $0 \leq \phi \leq 2 \pi$

Vector algebra

- Two vectors are equal if the corresponding components are equal.
- The sum of two vectors is a vector with elements that are sums of corresponding elements.
$\mathbf{C}=\mathbf{A}+\mathbf{B} \Leftrightarrow c_{i}=a_{i}+b_{i}$
- The difference of two vectors is defined analogously.

$$
\mathbf{C}=\mathbf{A}-\mathbf{B} \Leftrightarrow c_{i}=a_{i}-b_{i}
$$

Vectors and scalars

- Scalar
- A quantity having magnitude only
- Vector
- A quantity having magnitude and direction
-Functions
- Scalar function -- $f(x, y, z)$
- Vector function treated as three scalar functions:

$$
\mathbf{V}(x, y, z)=V_{x}(x, y, z) \mathbf{i}+V_{y}(x, y, z) \mathbf{j}+V_{z}(x, y, z) \mathbf{k}
$$

Vector multiplication

Dot product (scalar or inner product)

$$
A \bullet B=\sum a_{i} b_{i}
$$

-Cross product (vector or outer product)
$\mathbf{C}=\mathbf{A} \times \mathbf{B} \Leftrightarrow c_{i}=\varepsilon_{i j k}\left(a_{j} b_{k}-a_{k} b_{j}\right)$
Division of vectors is not defined.

Complex numbers and functions

- z represents a quantity like a two-dimensional vector
- Uses the imaginary number $i=\sqrt{-1}$
- Expressed as either
- The real (x) and imaginary (y) parts
- The magnitude (r) and phase (ϕ)
- Can depend on other variables - Complex functions

$$
z(t)=x(t)+i y(t)=r(t) \exp (i \phi(t))
$$

Summary

- Hamiltonian functions are constructed to describe the energy of a system
- Once known, one can find equations of motion from the Hamiltonian function of a conservative system
- Constants of motion are conserved quantities
- Different co-ordinate systems describe the same system
- Choose the co-ordinate system to define a problem so that it simplifies the mathematics
- Integration requires volume elements for each type of co-ordinate system
- Algebra of vectors
- Sums and differences
- Two different kinds of products

