NAG C Library

g03 - Multivariate Methods


Chapter Introduction
g03aac nag_mv_prin_comp
Principal component analysis
g03acc nag_mv_canon_var
Canonical variate analysis
g03adc nag_mv_canon_corr
Canonical correlation analysis
g03bac nag_mv_orthomax
Orthogonal rotations for loading matrix
g03bcc nag_mv_procustes
Procrustes rotations
g03cac nag_mv_factor
Maximum likelihood estimates of parameters
g03ccc nag_mv_fac_score
Factor score coefficients, following nag_mv_factor (g03cac)
g03dac nag_mv_discrim
Test for equality of wthin-group covariance matrices
g03dbc nag_mv_discrim_mahaldist
Mahalanobis squared distances, following nag_mv_discrim (g03dac)
g03dcc nag_mv_discrim_group
Allocation of observations to groups, following nag_mv_discrim (g03dac)
g03eac nag_mv_distance_mat
Compute distance (dissimilarity) matrix
g03ecc nag_mv_hierar_cluster_analysis
Performs hierarchical cluster analysis
g03efc nag_mv_kmeans_cluster_analysis
K-means
g03ehc nag_mv_dendrogram
Construct dendogram following nag_mv_hierar_cluster_analysis (g03ecc)
g03ejc nag_mv_cluster_indicator
Construct clusters following nag_mv_hierar_cluster_analysis (g03ecc)
g03fac nag_mv_prin_coord_analysis
Principal co-ordinate analysis
g03fcc nag_mv_ordinal_multidimscale
Multidimensional scaling
g03xzc nag_mv_dend_free
Frees memory allocated to the dendrogram array in nag_mv_dendrogram (g03ehc)
g03zac nag_mv_z_scores
Standardize values of a data matrix


Last modified: new doc September 1999
© The Numerical Algorithms Group Ltd, Oxford UK. 1999