
d01 – Quadrature d01gbc

nag multid quad monte carlo (d01gbc)

1. Purpose

nag multid quad monte carlo (d01gbc) evaluates an approximation to the integral of a function over
a hyper-rectangular region, using a Monte Carlo method. An approximate relative error estimate
is also returned. This routine is suitable for low accuracy work.

2. Specification

#include <nag.h>
#include <nagd01.h>

void nag_multid_quad_monte_carlo(Integer ndim, double (*f)(Integer ndim,
double x[]), Nag_MCMethod method, Nag_Start cont,
double a[], double b[], Integer *mincls, Integer maxcls,
double eps, double *finest, double *acc, double **comm_arr,
NagError *fail)

3. Description

nag multid quad monte carlo uses an adaptive Monte Carlo method based on the algorithm
described by Lautrup (1971). It is implemented for integrals of the form:

∫ b1

a1

∫ b2

a2

. . .

∫ bn

an

f(x1, x2, . . . , xn) dxn . . . dx2dx1.

Upon entry, unless the parameter method has the value Nag OneIteration, the routine subdivides
the integration region into a number of equal volume subregions. Inside each subregion the integral
and the variance are estimated by means of pseudo-random sampling. All contributions are added
together to produce an estimate for the whole integral and total variance. The variance along each
co-ordinate axis is determined and the routine uses this information to increase the density and
change the widths of the sub-intervals along each axis, so as to reduce the total variance. The total
number of subregions is then increased by a factor of two and the program recycles for another
iteration. The program stops when a desired accuracy has been reached or too many integral
evaluations are needed for the next cycle.

4. Parameters

ndim
Input: the number of dimensions of the integral, n.
Constraint: ndim ≥ 1.

f
The function f, supplied by the user, must return the value of the integrand f at a given
point.
The specification of f is:

double f(Integer ndim, double x[])

ndim
Input: the number of dimensions of the integral.

x[ndim]
Input: the co-ordinates of the point at which the integrand must be evaluated.

method
Input: the method to be used.
If method = Nag OneIteration, then the function uses only one iteration of a crude Monte
Carlo method with maxcls sample points.
If method = Nag ManyIterations, then the function subdivides the integration region into a
number of equal volume subregions.
Constraint: method = Nag OneIteration or Nag ManyIterations.

[NP3275/5/pdf] 3.d01gbc.1

nag multid quad monte carlo NAG C Library Manual

cont
Input: the continuation state of the evaluation of the integrand.
If cont=Nag Cold, indicates that this is the first call to the routine with the current integrand
and parameters ndim, a and b.
If cont = Nag Hot, indicates that a previous call has been made with the same parameters
ndim, a and b with the same integrand. Please note that method must not be changed.
If cont = Nag Warm, indicates that a previous call has been made with the same parameters
ndim, a and b but that the integrand is new. Please note that method must not be changed.
Constraint: cont = Nag Cold, Nag Warm or Nag Hot.

a[ndim]
Input: the lower limits of integration, ai, for i = 1, 2, . . . , n.

b[ndim]
Input: the upper limits of integration, bi, for i = 1, 2, . . . , n.

mincls
Input: mincls must be set to the minimum number of integrand evaluations to be allowed.
Constraint: 0 ≤ mincls < maxcls.
Output: mincls contains the total number of integrand evaluations actually used by
nag multid quad monte carlo.

maxcls
Input: the maximum number of integrand evaluations to be allowed. In the continuation case
this is the number of new integrand evaluations to be allowed. These counts do not include
zero integrand values.
Constraints: maxcls > mincls.

maxcls ≥ 4 × (ndim + 1).

eps
Input: the relative accuracy required.
Constraint: eps ≥ 0.0.

finest
Output: the best estimate obtained for the integral.

acc
Output: the estimated relative accuracy of finest.

comm arr
Input: if cont = Nag Warm or Nag Hot, the memory pointed to and allocated by a previous
call of nag multid quad monte carlo must be unchanged.
If cont=Nag Cold then appropriate memory is allocated internally by nag multid quad monte carlo.
Output: comm arr contains information about the current sub-interval structure which could
be used in later calls of nag multid quad monte carlo. In particular, comm arr[j − 1] gives
the number of sub-intervals used along the jth co-ordinate axis.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

Users are recommended to declare and initialise fail and set fail.print = TRUE for this
function.

5. Error Indications and Warnings

NE INT ARG LE
On entry, mincls must not be less than or equal to 0: mincls = 〈value〉.

NE INT ARG LT
On entry, ndim must not be less than 1: ndim = 〈value〉.

NE REAL ARG LT
On entry, eps must not be less than 0.0: eps = 〈value〉.

3.d01gbc.2 [NP3275/5/pdf]

d01 – Quadrature d01gbc

NE 2 INT ARG GE
On entry, mincls = 〈value〉 while maxcls = 〈value〉.
These parameters must satisfy mincls < maxcls.

NE 2 INT ARG LT
On entry, maxcls = 〈value〉 while ndim = 〈value〉.
These parameters must satisfy maxcls ≥ 4 × (ndim + 1).

NE BAD PARAM
On entry, parameter method had an illegal value.
On entry, parameter cont had an illegal value.

NE QUAD MAX INTEGRAND EVAL
maxcls was too small to obtain the required accuracy.
In this case nag multid quad monte carlo returns a value of finest with estimated relative
error acc, but acc will be greater than eps. This error exit may be taken before maxcls non-
zero integrand evaluations have actually occurred, if the routine calculates that the current
estimates could not be improved before maxcls was exceeded.

NE ALLOC FAIL
Memory allocation failed.

6. Further Comments

The running time for nag multid quad monte carlo will usually be dominated by the time used to
evaluate the integrand f, so the maximum time that could be used is approximately proportional
to maxcls.

For some integrands, particularly those that are poorly behaved in a small part of the integration
region, nag multid quad monte carlo may terminate with a value of acc which is significantly smaller
than the actual relative error. This should be suspected if the returned value of mincls is small
relative to the expected difficulty of the integral. Where this occurs, nag multid quad monte carlo
should be called again, but with a higher entry value of mincls (e.g. twice the returned value) and
the results compared with those from the previous call.

The exact values of finest and acc on return will depend (within statistical limits) on
the sequence of random numbers generated within nag multid quad monte carlo by calls to
nag random continuous uniform (g05cac). Separate runs will produce identical answers unless
the part of the program executed prior to calling nag multid quad monte carlo also calls
(directly or indirectly) routines from Chapter G05, and the series of such calls differs
between runs. If desired, the user may ensure the identity or difference between runs of
the results returned by nag multid quad monte carlo, by calling nag random init repeatable
(g05cbc) or nag random init nonrepeatable (g05ccc) respectively, immediately before calling
nag multid quad monte carlo.

6.1. Accuracy

A relative error estimate is output through the parameter acc. The confidence factor is set so that
the actual error should be less than acc 90% of the time. If a user desires a higher confidence level
then a smaller value of eps should be used.

6.2. References

Lautrup B (1971) An Adaptive Multi-dimensional Integration Procedure Proc. 2nd Coll. on
Advanced Methods in Theoretical Physics, Marseille.

7. See Also

nag multid quad adapt (d01fcc)

8. Example

This example program calculates the integral∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

4x1x3
2 exp(2x1x3)

(1 + x2 + x4)2
dx1dx2dx3dx4 = 0.575364.

[NP3275/5/pdf] 3.d01gbc.3

nag multid quad monte carlo NAG C Library Manual

8.1. Program Text

/* nag_multid_quad_monte_carlo(d01gbc) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd01.h>

#ifdef NAG_PROTO
static double f(Integer ndim, double x[]);
#else
static double f();
#endif

#define NDIM 4
#define MAXCLS 20000

main()
{

double a[4], b[4];
Integer k, mincls;
double finest;
double acc, eps;
Integer ndim = NDIM;
Integer maxcls = MAXCLS;
static NagError fail;
double *comm_arr = (double *)0;
Nag_MCMethod method;
Nag_Start cont;

Vprintf("d01gbc Example Program Results\n");
for (k=0; k<4; ++k)

{
a[k] = 0.0;
b[k] = 1.0;

}
eps = 0.01;
mincls = 1000;
method = Nag_ManyIterations;
cont = Nag_Cold;
d01gbc(ndim, f, method, cont, a, b, &mincls, maxcls, eps,

&finest, &acc, &comm_arr, &fail);
if (fail.code != NE_NOERROR)

Vprintf("%s\n", fail.message);
if (fail.code == NE_NOERROR || fail.code == NE_QUAD_MAX_INTEGRAND_EVAL)

{
Vprintf("Requested accuracy = %10.2e\n",eps);
Vprintf("Estimated value = %10.5f\n", finest);
Vprintf("Estimated accuracy = %10.2e\n", acc);
Vprintf("Number of evaluations = %5ld\n", mincls);
exit(EXIT_SUCCESS);

} /* if */
else

exit(EXIT_FAILURE);
}

#ifdef NAG_PROTO
static double f(Integer ndim, double x[])
#else

static double f(ndim, x)
Integer ndim;

3.d01gbc.4 [NP3275/5/pdf]

d01 – Quadrature d01gbc

double x[];
#endif
{
return x[0]*4.0*(x[2]*x[2])*exp(x[0]*2.0*x[2])/

((x[1]+1.0+x[3])*(x[1]+1.0+x[3]));
}

8.2. Program Data

None.

8.3. Program Results

d01gbc Example Program Results
Requested accuracy = 1.00e-02
Estimated value = 0.57554
Estimated accuracy = 8.20e-03
Number of evaluations = 1728

[NP3275/5/pdf] 3.d01gbc.5

