Basic vector operators:
Vectors defined using r and p:
Product rule:
Fundamental commutators:
Derivable commutators
2. Parallel to #1.
3. From Notes 16:
[Li , Lp]
= Sj,k,q,s
{eijk
epqs
[rjpk , rqps]}
= Sj,k,q,s
{eijk
epqs
{rj [pk , rqps]
+ [rj , rqps] pk }}
by expanding the commutator
= Sj,k,q,s
{eijk
epqs
{-i hbar rj
dkq ps
+ i hbar rq
djs pk }}
by evaluating the two commutators
= Sj,q,s
[ i hbar [- eijq
epqs
rj ps]
+ Sk,q,s
[eisk
epqs
rq pk ]
by using the two Kronecker deltas
Now in order that the r and p factors have the same indices in each term, so that they may be factored, we will rename s to q, q to j and k to s in the second term only:
[Li , Lp]
= i hbar Sj,q,s
[- eijq
epqs
rj ps]
+ i hbar Sj,q,s
[eiqs
epjq
rj ps ]
= i hbar Sj,q,s
{rj ps
(-eijq
eqsp
+ esiq
eqpj)}
by factoring rj ps
= i hbar Sj,q,s
{rj ps
[-(dis
djp
-dip
djs)
+(dsp
dij
-dsj
dip)]}
by using eq. [1] of Notes 16 in both terms
= i hbar Sj,q,s
{rj ps
[-(dis
djp)
+(dsp
dij)]}
by combining terms
We can now apply eq. [1] of Notes 16 in reverse to get
[Li , Lp]
= i hbar Sj,q,s
{eipq
eqjs
rj ps}
and use the definition of L to get
[Li , Lp] = Sq i hbar eipq Lq
4. [Li, Sj Lj2] = Sj { [Li , Lj] Lj + Lj [Li , Lj] = i hbar Sj,k { eijk (Lk Lj + Lj Lk )} = 0
5. [ri , Lj] = Sk, l iejkl [ri , rkpl] = Sk, l iejkl rk [ri , pl] = Sk, l iejkl rk i hbar dil = i hbar Sk ejkirk = i hbar Sk eijkrk
6. Parallel to # 5.
7. [ ri, Sj Lj2 ] = Sj { [ri , Lj] Lj + Li [ri , Lj]} = Sj, k i hbar eijk (rk Lj + Lj rk) ¹ 0
8. Parallel to # 7
9, 10. Similar to # 4.
11-13. Omitted; no new ideas needed.
Last Revised 03/11/15 |