Commutators

(Draft)

Basic vector operators:

Vectors defined using r and p:

Product rule:

Fundamental commutators:

  1. [ri, rj] = 0
  2. [pi, pj] = 0
  3. [ri, pj] = i hbar dij

Derivable commutators

  1. [ ri, Sj pj2 ] = 2 i hbar pi
  2. [ pi, Sj rj2 ] = - 2 i hbar ri
  3. [ Li, Lj ] = i hbar Sk eijk Lk
  4. [ Li, Sj Lj2 ] = 0
  5. [ ri, Lj ] = i hbar Sk eijk rk
  6. [ pi, Lj ] = i hbar Sk eijk pk
  7. [ ri, Sj Lj2 ]
  8. [ pi, Sj Lj2 ]
  9. [ Li, Sj rj2 ] = 0
  10. [ Li, Sj pj2 ] = 0
  11. [ a+, a- ] = - hbar w
  12. [ px2, a± ] = ± (2m)1/2 hbar w px
  13. [ x2, a± ] = (2/m)1/2 i hbar x

Selected Derivations

1. [ ri, Sj pj2 ]
= Sj { pj [ri, pj] +[ri, pj]pj }
= Sj { 2 i hbar dij pj}
= 2 i hbar pi

2. Parallel to #1.

3. From Notes 16:

[Li , Lp] = Sj,k,q,s {eijk epqs [rjpk , rqps]}
= Sj,k,q,s {eijk epqs {rj [pk , rqps] + [rj , rqps] pk }} by expanding the commutator
= Sj,k,q,s {eijk epqs {-i hbar rj dkq ps + i hbar rq djs pk }} by evaluating the two commutators
= Sj,q,s [ i hbar [- eijq epqs rj ps] + Sk,q,s [eisk epqs rq pk ] by using the two Kronecker deltas

Now in order that the r and p factors have the same indices in each term, so that they may be factored, we will rename s to q, q to j and k to s in the second term only:

[Li , Lp] = i hbar Sj,q,s [- eijq epqs rj ps] + i hbar Sj,q,s [eiqs epjq rj ps ]
= i hbar Sj,q,s {rj ps (-eijq eqsp + esiq eqpj)} by factoring rj ps
= i hbar Sj,q,s {rj ps [-(dis djp -dip djs) +(dsp dij -dsj dip)]} by using eq. [1] of Notes 16 in both terms
= i hbar Sj,q,s {rj ps [-(dis djp) +(dsp dij)]} by combining terms

We can now apply eq. [1] of Notes 16 in reverse to get

[Li , Lp] = i hbar Sj,q,s {eipq eqjs rj ps}

and use the definition of L to get

[Li , Lp] = Sq i hbar eipq Lq

4. [Li, Sj Lj2] = Sj { [Li , Lj] Lj + Lj [Li , Lj] = i hbar Sj,k { eijk (Lk Lj + Lj Lk )} = 0

5. [ri , Lj] = Sk, l iejkl [ri , rkpl] = Sk, l iejkl rk [ri , pl] = Sk, l iejkl rk i hbar dil = i hbar Sk ejkirk = i hbar Sk eijkrk

6. Parallel to # 5.

7. [ ri, Sj Lj2 ] = Sj { [ri , Lj] Lj + Li [ri , Lj]} = Sj, k i hbar eijk (rk Lj + Lj rk) ¹ 0

8. Parallel to # 7

9, 10. Similar to # 4.

11-13. Omitted; no new ideas needed.
Last Revised 03/11/15