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Abstract

The report documents a new version of the fully nonlinear Boussinesq wave model (FUN-
WAVE) initially developed by Kirby et al. (1998). The development of the present version was
motivated by recent needs for modeling of surfzone-scale optical properties in a Boussinesq
model framework, and modeling of Tsunami wave in both a regional/coastal scale for predic-
tion of coastal inundation and a basin scale for wave propagation. This version features several
theoretical and numerical improvements, including 1) a more complete set of fully nonlinear
Boussinesq equations; 2) MUSCL-TVD solver with adaptive Runge-Kutta time stepping; 3)
Shock-capturing wave breaking scheme; 4) wetting-drying moving boundary condition with
incorporation of HLL construction method into the scheme; 5) an option for parallel compu-
tation. The documentation provides derivations of the conservation form of theoretical equa-
tions, re-arrangement of pressure gradient term in order to obtain a numerically well-balanced
form, detailed numerical schemes, users’ manual and examples.
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1 Introduction

The Boussinesq wave model has been a useful tool for modeling surface waves from deep water
to the swash zone, as well as wave-induced circulations inside the surfzone. FUNWAVE, the fully
nonlinear Boussinesq model developed by the University of Delaware group (Kirby et al.,1998),
has come into fairly wide usage in the coastal community. FUNWAVE was based on the fully non-
linear Boussinesq equations derived by Wei et al. (1995) and used the high-order finite difference
numerical method.

Since the initial version of FUNWAVE was developed, there were several updates in both
theory and numerics for the fully nonlinear Boussinesq model. Gobbi et al. (2000) extended Wei
et al. (1995) to higher order, which improved predictions of near-bed kinematics in deeper water.
Chen (2006) pointed out missing terms in Wei et al. (1995) which represent the vertical vorticity on
a sloping bed. Kennedy et al. (2001) introduced a concept of reference elevation in the derivation of
the extended Boussinesq equations to improve nonlinear performance. Shi et al. (2001) extended
the fully nonlinear Boussinesq equations into a non-Cartesian coordinate system.

In the aspect of numerics, Wei and Kirby (1995) initially described a numerical scheme in
which time stepping is treated using a fourth-order Adams-Bashforth-Moulton scheme, while spa-
tial differencing is handled using a mixed-order scheme, employing fourth-order accurate centered
differences for first derivatives and second-order accurate differences for third derivatives. The
choice is made in order to move leading truncation errors to one order higher than the O(µ2)
dispersive terms, while maintaining the tridiagonal structure of spatial derivatives within time-
derivative terms. A non-staggered grid system was used in Wei and Kirby (1995). Shi et al (2001)
used similar numerical schemes but a staggered grid approach, which has less apparent sensitivity
to treatment of boundary conditions. The staggered grid scheme has become the preferred ap-
proach in later developments of the Delaware Boussinesq models such as in FUNWAVE 2 (Long
and Kirby, 2006).

The moving shoreline condition in FUNWAVE was treated using a so-called slot technique
(Kennedy et al., 2000, Chen et al., 2000). In the slot method, deep and narrow slots are added
to each grid row, extending down at least to the lowest elevation that will be experienced during
shoreface rundown. Recent model tests on solitary wave runup performed at Oregon State Univer-
sity’s O.H. Hinsdale Wave Research Laboratory (ISEC/NEES Workshop, Oregon State University,
July, 2009) have raised a concern about considerable errors induced by the slot method. Slots,
which are too wide relative to the model grid spacing, admit too much fluid before filling during
runup, and cause both a reduction in amplitude and a phase lag in modeled runup events. At the
other extreme, slots, which are too narrow, tend to induce a great deal of numerical noise, leading
to the need for intermittent or even fairly frequent filtering of swash zone solutions.

Wave breaking in FUNWAVE was approached with the eddy viscosity method of Kennedy et
al. (2000), following an early eddy viscosity model by Zelt (1991). Kennedy et al. used a model
which involves a time history in order to allow the slope of the breaking wave crest to relax after
the onset of breaking. Similar approaches were used by other Boussinesq model developers, such
as Nwogu and Demirbilek (2001) who used a more sophisticated eddy viscosity model in which
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the eddy viscosity is expressed in terms of turbulent kinetic energy and a length scale.
Recent progress in the development of Boussinesq-type wave models, using a hybrid method

combining the finite-volume and finite-difference TVD-type schemes (Toro, 2009), have shown
robust performance of the shock-capturing method in simulating breaking waves and coastal inun-
dation (Tonelli and Petti, 2009, Roeber et al., 2010, Shiach and Mingham, 2009, Erduran et al.,
2005, and others). The shock-capturing scheme makes the treatment of wave breaking straightfor-
ward, without the artificial viscosity adopted in some breaking wave models such as in Kennedy
et al. (2000). The scheme is also able to capture the sharp wave front occurring in the swash
zone. The combined finite-volume and finite difference scheme also makes it easy to implement
a wetting-drying moving shoreline condition. Recent applications of using such a wetting-drying
method have shown to be quite accurate in modeling of wave runup (e.g., Lynett et al., 2002).

This work was motivated by recent needs to model the surfzone and swash zone dynamics and
associated breaking wave-induced processes, such as optical properties and sediment transport in a
10 km-scale computational domain, and to model tsunami waves in both a regional/coastal scale for
prediction of coastal inundation and a basin scale for wave propagation. We are pursuing a version,
which is stable and robust in model efficiency and accuracy in a long time wave simulation in a
large computational domain.

In this version, we start with the more complete set of fully nonlinear Boussinesq equations de-
veloped by Chen (2006), extended to incorporate a moving reference elevation following Kennedy
et al (2001). The use of a moving reference elevation is more consistent with a time-varying rep-
resentation of elevation at a moving shoreline in modeling of a swash zone dynamics and coastal
inundation. A conservative form of the equations is derived in order to use a hybrid numerical
scheme. Dispersive terms were reorganized with the aim of constructing a tridiagonal structure
of spatial derivatives within time-derivative terms. The surface elevation gradient term was also
rearranged to obtain a numerically well-balanced form, which is suitable for any numerical order.
In contrast to previous high-order temporal schemes, which usually require uniform time-stepping,
we used adaptive time stepping based on the third-order Runge-Kutta method. Spatial derivatives
were discretized using a combination of finite-volume and finite-difference methods. A high-order
MUSCL reconstruction technique, which is accurate up to the fourth-order, was used in the Rie-
mann solver. The wave breaking scheme followed the approach of Tonelli and Petti (2009), who
used the ability of the nonlinear shallow water equations with a TVD solver to simulate moving
hydraulic jumps. Wave breaking is modeled by switching Boussinesq to NSWE at cells where the
Froude number exceeds a certain threshold. A wetting-drying scheme was used to model a moving
shoreline.

The model was parallelized using the domain decomposition technique. The Message Pass-
ing Interface (MPI) with non-blocking communication is used for data communication between
processors.

This report provides derivations of the conservation form of theoretical equations with a well-
balanced pressure gradient term, numerical schemes, and users’ manual. The last part of report
illustrates the model’s applications to problems of wave breaking and runup in the context of a
standard suite of benchmark tests. In addition, we include a brief documentation of the spheri-
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cal Boussinesq model used for Tsunami wave simulations. The spherical Boussinesq model was
based on Kirby et al. (2004, 2011) and implemented in the same model framework. A detailed
documentation for the spherical code will be reported separately.

2 Theory

In this section, we describe the development of a set of Boussinesq equations which are accurate
to O(µ2) in dispersive effects. Here, µ is a parameter characterizing the ratio of water depth to
wave length, and is assumed to be small in classical Boussinesq theory. We retain dimensional
forms below but will refer to the apparent O(µ2) ordering of terms resulting from deviations from
hydrostatic behavior in order to identify these effects as needed. The model equations used here
follow from the work of Chen (2006). In this and earlier works starting with Nwogu (1993), the
horizontal velocity is written as

u = uα + u2(z) (1)

Here, uα denotes the velocity at a reference elevation z = zα, and

u2(z) = (zα − z)∇A+
1
2
(
z2
α − z2

)
∇B (2)

represents the depth-dependent correction at O(µ2), with A and B given by

A = ∇ · (huα)
B = ∇ · uα (3)

The derivation follows Chen (2006) except for the additional effect of letting the reference elevation
zα vary in time according to

zα = ζh+ βη (4)

where h is local still water depth, η is local surface displacement and ζ and β are constants, as in
Kennedy et al (2001). This addition does not alter the details of the derivation, which are omitted
below.

2.1 Governing equations

The equations of Chen (2006) extended to incorporate a possible moving reference elevation follow.
The depth-integrated volume conservation equation is given by

ηt +∇ ·M = 0 (5)

where
M = H {uα + u2} (6)
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is the horizontal volume flux. H = h+η is the total local water depth and u2 is the depth averaged
O(µ2) contribution to the horizontal velocity field, given by

u2 =
1
H

∫ η

−h
u2(z)dz =

(
z2
α

2
− 1

6
(h2 − hη + η2)

)
∇B +

(
zα +

1
2

(h− η)
)
∇A (7)

The depth-averaged horizontal momentum equation can be written as

uα,t + (uα · ∇)uα + g∇η + V1 + V2 + V3 + R = 0 (8)

where g is the gravitational acceleration and R represents diffusive and dissipative terms includ-
ing bottom friction and subgrid lateral turbulent mixing. V1 and V2 are terms representing the
dispersive Boussinesq terms given by

V1 =
{
z2
α

2
∇B + zα∇A

}
t

−∇
[
η2

2
Bt + ηAt)

]
(9)

V2 = ∇
{

(zα − η)(uα · ∇)A+
1
2

(z2
α − η2)(uα · ∇)B +

1
2

[A+ ηB]2
}

(10)

The form of (9) allows for the reference level zα to be treated as a time-varying elevation, as
suggested in Kennedy et al (2001). If this extension is neglected, the terms reduce to the form
given originally by Wei et al (1995). The expression (10) for V2 was also given by Wei et al
(1995), and is not altered by the choice of a fixed or moving reference elevation.

The term V3 in (8) represents the O(µ2) contribution to the expression for ω ×u = ωiz × u
(with iz the unit vector in the z direction) and may be written as

V3 = ω0iz × u2 + ω2iz × uα (11)

where

ω0 = (∇× uα) · iz = vα,x − uα,y (12)

ω2 = (∇× u2) · iz = zα,x(Ay + zαBy)− zα,y(Ax + zαBx) (13)

Following Nwogu (1993), zα is usually chosen in order to optimize the apparent dispersion
relation of the linearized model relative to the full linear dispersion in some sense. In particular,
the choice α = (zα/h)2/2 + zα/h = −2/5 recovers a Padé approximant form of the dispersion
relation, while the choice α = −0.39, corresponding to the choice zα = −0.53h, minimizes the
maximum error in wave phase speed occurring over the range 0 ≤ kh ≤ π. Kennedy et al (2001)
showed that, allowing zα to move up and down with the passage of the wave field, allowed a
greater degree of flexibility in optimizing nonlinear behavior of the resulting model equations. In
the examples chosen here, where a great deal of our focus is on the behavior of the model from the
break point landward, we adopt Kennedy et al’s “datum invariant” form

zα = −h+ βH = (β − 1)h+ βη = ζh+ (1 + ζ)η (14)
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with ζ = −0.53 as in Nwogu (1993) and β = 1 + ζ = 0.47 This corresponds in essence to a σ
coordinate approach, which places the reference elevation at a level 53% of the total local depth
below the local water surface. This also serves to keep the model reference elevation within the
actual water column over the entire wetted extent of the model domain.

2.2 Treatment of the surface gradient term

The hybrid numerical scheme requires a conservative form of continuity equation and momen-
tum equations, thus requiring a modification of the leading order pressure term in the momentum
equation. A numerical imbalance problem occurs when the surface gradient term is conventionally
split into an artificial flux gradient and a source term that includes the effect of the bed slope for a
non-uniform bed. To eliminate errors introduced by the traditional depth gradient method (DGM),
a so-called surface gradient method (SGM) proposed by Zhou et al. (2001) was adopted in the
TVD based-Boussinesq models in the recent literatures. Zhou et al. discussed an example of SGM
in 1-D and verified that the slope-source term may be canceled out by part of the numerical flux
term associated with water depth, if the bottom elevation at the cell center is constructed using the
average of bottom elevations at two cell interfaces. Zhou et al. also showed a 2D application, but
without explicitly describing 2D numerical schemes. Although this scheme can be extended into
2D following the same procedure as in 1D, it was found that the 2D extension may not be trivial
in terms of the bottom construction for a 2D arbitrary bathymetry. Kim et al. (2008) pointed out
that the water depth in the slope-source term should be written in a discretized form rather than the
value obtained using the bottom construction, implying that their revised SGM is valid for general
2D applications.

For the higher-order schemes, such as the fourth-order MUSCL-TVD scheme (Yamamoto and
Daiguji, 1993, Yamamoto et al., 1998) used in the recent Boussinesq applications, the original
SGM and the revised SGM may not be effective in removing the artificial source. This problem
was recently noticed by some authors, such as Roeber et al. (2010), who kept a first-order scheme
(second-order for normal conditions) for the numerical flux term and the slope-source term in order
to ensure a well-balanced solution, without adding noise for a rapidly varying bathymetry.

In fact, the imbalance problem can be solved by a reformulation of this term in terms of devia-
tions from an unforced but separately specified equilibrium state (see general derivations in Rogers
et al., 2003 and recent application in Liang and Marche, 2009). Using this technique, the surface
gradient term may be split as

gH∇η = ∇
[

1
2
g(η2 + 2hη)

]
− gη∇h (15)

which is well-balanced for any numerical order under an unforced stationary condition (still water
condition).
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2.3 Conservative form of fully nonlinear Boussinesq equations

For Chen’s (2006) equations or the minor extension considered here, Huα can be used as a con-
served variable in the construction of a conservative form of Boussinesq equations, but this results
in a source term in the mass conservation equation, such as in Shiach and Mingham (2009) and
Roeber et al. (2010). An alternative approach is to use M as a conserved variable in terms of the
physical meaning of mass conservation. In this study, we used M, instead ofHuα, in the following
derivations of the conservative form of the fully nonlinear Boussinesq equations.

Using M from (6) together with the vector identity

∇ · (uv) = ∇u · v + (∇ · v)u (16)

allows (8) to be rearranged as

Mt +∇ ·
(

MM
H

)
+ gH∇η

= H
{
u2,t + uα · ∇u2 + u2 · ∇uα −V1 −V2 −V3 −R

}
(17)

Following Wei et al. (1995), we separate the time derivative dispersion terms in V1 according
to

V1 = V′1,t + V′′1 (18)

where

V′1 =
z2
α

2
∇B + zα∇A−∇

[
η2

2
B + ηA

]
(19)

and
V′′1 = ∇ [ηt(A+ ηB)] (20)

Using (15), (19) and (20), the momentum equation can be rewritten as

Mt +∇ ·
[
MM
H

]
+∇

[
1
2
g(η2 + 2hη)

]
= (21)

= H
{
u2,t + uα · ∇u2 + u2 · ∇uα −V′1,t −V′′1 −V2 −V3 −R

}
+ gη∇h

A difficulty usually arises in applying the adaptive time-stepping scheme to the time derivative
dispersive terms ū2,t and V′1,t, which was usually calculated using values stored in several time
levels in the previous Boussinesq codes such as in Wei et al. (1995) and Shi et al. (2001). To
prevent this, the equation can be re-arranged by merging the time derivatives on the right hand side
into the time derivative term on the left hand side, giving

Vt +∇ ·
[
MM
H

]
+∇

[
1
2
g(η2 + 2hη)

]
= ηt(V′1 − u2) (22)

+H
(
uα · u2 + u2 · ∇uα −V′′1 −V2 −V3 −R

)
+ gη∇h
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where
V = H(uα + V′1) (23)

In (23) ηt can be calculated explicitly using (5) as in Roeber et al. (2010). Equations (5) and (22)
are the governing equations solved in this study. As V is obtained, the velocity uα can be found by
solving a system of equation with tridiagonal matrix formed by (23), in which all cross-derivatives
are moved to the right-hand side of the equation.

3 Numerical schemes

3.1 Compact form of governing equations

We define

uα = (u, v),
u2 = (U4, V4),
M = (P,Q) = H [u+ U4, v + V4] ,
V′1 = (U ′1, V

′
1),

V′′1 = (U ′′1 , V
′′
1 ),

V2 = (U2, V2),
V = (U, V ) = H

[
(u+ U ′1), (v + V ′1)

]
.

The generalized conservative form of Boussinesq equations can be written as

∂Ψ
∂t

+∇ ·Θ(Ψ) = S (24)

where Ψ and Θ(Ψ) are the vector of conserved variables and the flux vector function, respectively,
and are given by

Ψ =

 η
U
V

 , Θ =


P i +Qj[

P 2

H + 1
2g(η2 + 2ηh)

]
i + PQ

H j
PQ
H i +

[
Q2

H + 1
2g(η2 + 2ηh)

]
j

 . (25)

S =

 0
gη ∂h∂x + ψx +HRx
gη ∂h∂y + ψy +HRy

 , (26)

where

ψx = ηt(U ′1 − U4) +H
(
uU4,x + vU4,y + U4ux + V4uy − U ′′1 − U2 − U3

)
(27)
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ψy = ηt(V ′1 − V4) +H
(
uV4,x + vV4,y + U4vx + V4vy − U ′′1 − V2 − V3

)
(28)

The expanded forms of (U ′1, V
′
1), (U ′′1 , V

′′
1 ), (U2, V2), (U3, V3) and (U4, V4) can be found in

Appendix A. For the term R, the bottom stress is approximated using a quadratic friction equation.
A Smagorinsky (1963)-like subgrid turbulent mixing algorithm is implemented following Chen et
al. (1999).

3.2 Spatial discretization

A combined finite-volume and finite-difference method was applied to the spatial discretization.
For the flux terms and the first-order derivative terms, a high-order MUSCL-TVD scheme is im-
plemented in the present model. The high-order MUSCL-TVD scheme can be written in a compact
form including different orders of accuracy from the second- to the fourth-order, according to Er-
duran et al. (2005) who modified Yamamoto et al.’s (1995) fourth-order approach. In x-direction,
for example, the combined form of the interface construction can be written as follows:

φLi+1/2 = φi +
1
4
[
(1− κ1)χ(r)∆∗φi−1/2 + (1 + κ1)χ(1/r)∆∗φi+1/2

]
(29)

φRi−1/2 = φi −
1
4
[
(1 + κ1)χ(r)∆∗φi−1/2 + (1− κ1)χ(1/r)∆∗φi+1/2

]
(30)

where φLi+1/2 is the constructed value at the left-hand side of the interface i + 1
2 and φRi−1/2 is the

value at the right-hand side of the interface i− 1
2 . The values of ∆∗φ are evaluated as follows:

∆∗φi+1/2 = ∆φi+1/2 − κ2∆3φ̄i+1/2/6,
∆φi+1/2 = φi+1 − φi,
∆3φ̄i+1/2 = ∆φ̄i+3/2 − 2∆φ̄i+1/2 + ∆φ̄i−1/2,

∆φ̄i−1/2 = minmod(∆φi−1/2,∆φi+1/2,∆φi+3/2),
∆φ̄i+1/2 = minmod(∆φi+1/2,∆φi+3/2,∆φi−1/2),
∆φ̄i+3/2 = minmod(∆φi+3/2,∆φi−1/2,∆φi+1/2)

(31)

In (31), minmod represents the Minmod limiter and is given by

minmod(j, k, l) = sign(j)max{0,min[|j|, 2sign(j)k, 2sign(j)l]}. (32)

κ1 and κ2 in (29) and (30) are control parameters for orders of the scheme in the compact form.
The complete form with (κ1, κ2) = (1/3, 1) is the fourth-order scheme given by Yamamoto et al.
(1995). (κ1, κ2) = (1/3, 0) yields a third-order scheme, while the second-order scheme can be
retrieved using (κ1, κ2) = (−1, 0).
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χ(r) in (29) and (30) is the limiter function. The original scheme introduced by Yamamoto
et al. (1998) uses the Minmod limiter as used in (31). Erduran et al. (2005) found that the
use of the van-Leer limiter for the third-order scheme gives more accurate results. Their finding
was confirmed by using the present model in the benchmark tests for wave runup conducted by
Tehranirad et al. (2011). The van-Leer limiter can be expressed as

χ(r) =
r + |r|
1 + r

(33)

where

r =
∆∗φi+1/2

∆∗φi−1/2
. (34)

The numerical fluxes are computed using a HLL approximate Riemann solver

Θ(ΨL,ΨR) =


Θ(ΨL) if sL ≥ 0
Θ∗(ΨL,ΨR) if sL < 0 < sR
Θ(ΨR) if sR ≤ 0,

(35)

where

Θ∗(ΨL,ΨR) =
sRΘ(ΨL)− sLΘ(ΨR) + sLsR(ΨR −ΨL)

sR − sL
(36)

The wave speeds of the Riemann solver are given by

sL = min(VL · n−
√
g(h+ η)L, us −

√
ϕs), (37)

sR = max(VR · n +
√
g(h+ η)R, us +

√
ϕs), (38)

in which us and ϕs are estimated as

us =
1
2

(VL + VR) · n +
√
g(η + h)L −

√
g(η + h)R (39)

√
ϕs =

√
g(η + h)L +

√
g(η + h)R

2
+

(VL −VR) · n
4

(40)

and n is the normalized side vector for a cell face.
Higher derivative terms in ψx and ψy were discretized using a central difference scheme at the

cell centroids, as in Wei et al. (1995). No discretization of dispersion terms at the cell interfaces
is needed due to using M as a flux variable. The Surface Gradient Method (Zhou et al, 2001) was
used to eliminate unphysical oscillations. Because the pressure gradient term is re-organized as in
section 2.2, there is no imbalance issue for the high-order MUSCL scheme.
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3.3 Time stepping

The third-order Strong Stability-Preserving (SSP) Runge-Kutta scheme for nonlinear spatial dis-
cretization (Gottlieb et al., 2001) was adopted for time stepping. The scheme is given by

Ψ(1) = Ψn + ∆t(−∇ ·Θ(Ψn) + S(1))

Ψ(2) =
3
4
Ψn +

1
4

[
Ψ(1) + ∆t

(
−∇ ·Θ(Ψ(1)) + S(2)

)]
(41)

Ψn+1 =
1
3
Ψn +

2
3

[
Ψ(2) + ∆t

(
−∇ ·Θ(Ψ(2)) + Sn+1

)]
in which Ψn denotes Ψ at time level n. Ψ(1) and Ψ(2) are values at intermediate stages in the
Runge-Kutta integration. As Ψ is obtained at each intermediate step, the velocity (u, v) can be
solved by a system of tridiagonal matrix equations formed by (23). S needs to be updated using
(u, v, η) at the corresponding time step and an iteration is needed to achieve convergence.

An adaptive time step is chosen, following the Courant-Friedrichs-Lewy (CFL) criterion:

∆t = Cmin

(
min

∆x
|ui,j |+

√
g(hi,j + ηi,j)

,min
∆y

|vi,j |+
√
g(hi,j + ηi,j)

)
(42)

where C is the Courant number and C = 0.5 was used in the following examples.

3.4 Wave breaking and wetting-drying schemes for shallow water

The wave breaking scheme follows the approach of Tonelli and Petti (2009), who successfully
used the ability of NSWE with a TVD scheme to model moving hydraulic jumps. Thus, the fully
nonlinear Boussinesq equations are switched to NSWE at cells where the Froude number exceeds
a certain threshold. Following Tonelli and Petti, the ratio of wave height to total water depth is
chosen as the criterion to switch from Boussinesq to NSWE, with threshold value set to 0.8, as
suggested by Tonelli and Petti.

The wetting-drying scheme for modeling a moving boundary is straightforward. The normal
flux n ·M at the cell interface of a dry cell is set to zero. A mirror boundary condition is applied
to the fourth-order MUSCL-TVD scheme and discretization of dispersive terms in ψx, ψy at dry
cells. It may be noted that the wave speeds of the Riemann solver (37) and (38) for a dry cell are
modified as

sL = VL · n−
√
g(h+ η)L, sR = VL · n + 2

√
g(h+ η)L (right dry cell) (43)

and
sL = VR · n−

√
g(h+ η)R, sR = VR · n + 2

√
g(h+ η)R (left dry cell) (44)
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3.5 Boundary conditions and wavemaker

We implemented various boundary conditions including wall boundary condition, absorbing bound-
ary condition following Kirby et al. (1998) and periodic boundary condition following Chen et al.
(2003).

Wavemakers implemented in this study include Wei and Kirby’s (1999) internal wavemakers
for regular waves and irregular waves. For the irregular wavemaker, an extension was made to
incorporate an alongshore periodicity into wave generation, in order to eliminate a boundary ef-
fect on wave simulations. The technique exactly follows the strategy in Chen et al. (2003), who
adjusted the distribution of wave directions in each frequency bin to obtain alongshore periodic-
ity. This approach is effective in modeling of breaking wave-induced nearshore circulation such as
alongshore currents and rip currents.

3.6 Parallelization

In parallelizing the computational model, we used a domain decomposition technique to subdi-
vide the problem into multiple regions and assign each subdomain to a separate processor core.
Each subdomain region contains an overlapping area of ghost cells, three-row deep, as required by
the fourth order MUSCL-TVD scheme. The Message Passing Interface (MPI) with non-blocking
communication is used to exchange data in the overlapping region between neighboring proces-
sors. Velocity components are obtained from Equation (23), by solving tridiagonal matrices using
the parallel pipelining tridiagonal solver described in Naik et al. (1993).

To investigate performance of the parallel program, numerical simulations of an idealized
case are tested with different numbers of processors on a Linux cluster located at University of
Delaware. The test case is set up in a numerical grid of 1800 × 1800 cells. Figure 1 shows the
model speedup versus number of processors. It can be seen that performance scales nearly pro-
portional to the number of processors, with some delay caused by inefficiencies in parallelization,
such as inter-processor communication time.

3.7 Implementation of weakly nonlinear Boussinesq equations in spherical coordi-
nates

The weakly nonlinear Boussinesq equations in spherical coordinates are solved in the same model
framework. We used the spherical Boussinesq equations derived by Kirby et al. (2004, 2011):

Ht +
1

r0 cos θ
{(Hu)φ + (Hv cos θ)θ} = 0 (45)

ut − fv +
1

r0 cos θ
uuφ +

1
r0
vuθ +

g

r0 cos θ
ηφ

+
1

r20 cos2 θ

{
h2

6
[uφφt + (v cos θ)φθt]−

h

2
[(hut)φφ + (h cos θvt)φθ]

}
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Figure 1: Variation in model performance with number of processors for a 1800 x 1800 domain.
Straight line indicates arithmetic speedup. Actual performance is shown in the curved line.
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−τφb +
1

r0 cos θ
(BFT )φ = 0 (46)

vt + fu+
1

r0 cos θ
uvφ +

1
r0
vvθ +

g

r0
ηθ

+
1
r20

{
h2

6

[
1

cos θ
{uφt + (v cos θ)θt}

]
θ

− h

2

[
1

cos θ
{(hut)φ + (h cos θvt)θ}

]
θ

}
−τ θb +

1
r0

(BFT )θ = 0 (47)

where θ and φ denote latitude and longitude, respectively, r0 is the earth radius, f is the Coriolis
parameter, H = h + η, (u, v) represent the depth-averaged velocity. BFT denotes forcing terms
resulting from motion of the ocean bottom and it is not taken into account in the present program.

To facilitate solving the spherical equations in the same model framework as in the Cartesian
coordinates, we solve the spherical governing equations by transforming the equations into an
equivalent set of equations in Cartesian coordinates using a standard cylindrical projection. We
define

{
ξ1 = r0 cos θ0(φ− φ0)
ξ2 = r0(θ − θ0)

(48)

where (φ0, θ0) are the reference longitude and latitude, respectively. The differentials of ξ1 and ξ2
are {

dξ1 = r0 cos θ0dφ
dξ2 = r0dθ

(49)

dφ and dθ in (45) - (47) are replaced by dξ1 and dξ2. Detailed derivations for each term are
described below.

1
r0 cos θ

(Hu)φ = Sp(Hu)ξ1 (50)

1
r0 cos θ

(Hv cos θ)θ =
1

r0 cos θ
[cos θ(Hv)θ −Hv sin θ] = (Hv)ξ2 −

1
r0

tan θHv (51)

1
r0 cos θ

uuφ = Spuuξ1 (52)

1
r0
vuθ = vuξ2 (53)

1
r0 cos θ

gηφ = Spgηξ1 (54)

h2

6
1

r20 cos2 θ
uφφt = S2

p

h2

6
uξ1ξ1t (55)
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h2

6
1

r20 cos2 θ
(v cos θ)φθt =

h2Sp
6

(
vξ1ξ2 −

1
r0

tan θvξ1

)
t

(56)

−h
2

1
r20 cos2 θ

(hu)φφt = −
hS2

p

2
(hu)ξ1ξ1t (57)

−h
2

1
r20 cos2 θ

(hv cos θ)φθt = −hSp
2

[
(hv)ξ1ξ2 −

1
r0

tan θ(hv)ξ1

]
t

(58)

1
r0 cos θ

uvφ = Spuvξ1 (59)

1
r0
vvθ = vvξ2 (60)

1
r0
gηθ = gηξ2 (61)

h2

6
1
r20

( uφt
cos θ

)
θ

=
h2Sp

6

(
uξ1ξ2 +

1
r0

tan θuξ1

)
t

(62)

−h
2

1
r20

[
(hu)φt
cos θ

]
θ

= −hSp
2

[
(hu)ξ1ξ2 +

1
r0

tan θ(hu)ξ1

]
t

(63)

h2

6
1
r20

[
(v cos θ)θt

cos θ

]
θ

=
h2

6

[
vξ2ξ2 −

1
r0

tan θvξ2 −
1

r20 cos2 θ
v

]
t

(64)

−h
2

1
r20

[
(hv cos θ)θt

cos θ

]
θ

= −h
2

[
(hv)ξ2ξ2 −

1
r0

tan θ(hv)ξ2 −
1

r20 cos2 θ
hv

]
t

(65)

where Sp is a spherical coordinate correction factor expressed by

Sp =
cos θ0
cos θ

. (66)

The equations in (ξ1, ξ2) coordinates are

Ht + Sp(Hu)ξ1 + (Hv)ξ2 =
1
r0

tan θHv (67)

ut + Spuuξ1 + vuξ2 − fv + Spgηξ1 + Ft − τ ξ1b + Sp(BFT )ξ1 = 0 (68)

vt + Spuvξ1 + vvξ2 + fu+ gηξ2 +Gt − τ ξ2b + (BFT )ξ2 (69)

where

F =
h2S2

p

6
uξ1ξ1 +

h2Sp
6

(vξ1ξ2−
1
r0

tan θvξ1)−
hS2

p

2
(hu)ξ1ξ1−

hSp
2

[
(hv)ξ1ξ2 −

1
r0

tan θ(hv)ξ1

]
(70)
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G =
h2Sp

6

(
uξ1ξ2 +

1
r0

tan θuξ1

)
+
h2

6

(
vξ2ξ2 −

1
r0

tan θvξ2 −
1

r20 cos2 θ
v

)
−hSp

2

[
(hu)ξ1ξ2 +

1
r0

tan θ(hu)ξ1

]
− h

2

[
(hv)ξ2ξ2 −

1
r0

tan θ(hv)ξ2 −
1

r20 cos2 θ
(hv)

]
(71)

The conservation forms of the spherical equations can be rewritten in the same form of the
Cartesian equations (24) and Ψ ,Θ and S are defined as

Ψ =

 η
Us
Vs

 , Θ =


SpP i +Qj[

SpP 2

h+η + 1
2Spg(η2 + 2ηh)

]
i + PQ

h+η j
SpPQ
h+η i +

[
Q2

h+η + 1
2g(η2 + 2ηh)

]
j

 . (72)

S =


1
r0

tan θ(h+ η)v
Spgη

∂h
∂ξ1

+ f(h+ η)v + τ ξ1b + ψ1

gη ∂h∂ξ2 − f(h+ η)u+ τ ξ2b + ψ2

 , (73)

where P = (h+ η)u, Q = (h+ η)v,

Us = (h+ η)(u+ F ) (74)

Vs = (h+ η)(v +G) (75)

ψ1 = ηtF (76)

ψ2 = ηtG (77)

4 Users’ Manual

4.1 Program outline and flow chart

The code was written using Fortran 90 with the c preprocessor (cpp) statements for separation
of the source code. Arrays are dynamically allocated at runtime. Precision is selected using the
selected real kind Fortran intrinsic function defined in the makefile. The default precision is single.

The present version of FUNWAVE-TVD includes a number of options including (1) choice
of serial or parallel code (2) Cartesian or spherical coordinate (Tsunami propagation mode), (3)
samples, (4) one-way nesting mode, and (5) wave breaking index and aging (bubble and foam
mode).

The flow chart is shown in Figure 2.
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READ INPUT!

INDEXING (FOR GHOST CELLS)!

ALLOCATE_VARIABLES!

READ HOTSTART DATA! INITIALIZATION!

UPDATE ETA UBAR VBAR MASK!

UPDATE GHOST CELLS !

ESTIMATE DT !

CALCULATE DISPERSION TERMS !

CALCULATE FLUXES !

RUNGE-KUTTA SOLVER !

SPONGE DAMPING IF NEEDED !

UPDATE GHOST CELLS!

STATISTICS !

OUTPUT WHEN NEEDED!

WRITE HOTSTART DATA WHEN NEEDED !

STOP !

CONTINUE !

RK & ITERATION!

TIME LOOP!

HOT START! COLD START!

CALCULATE SOURCE TERMS !

Figure 2: Flow chart of the main program.
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4.2 Subroutine and function descriptions

ALLOCATE VARIABLES: allocate variables. It is called by MAIN.

BREAKING: print breaking index and breaking age calculated based on Kennedy et al. (2000).
This option is defined in input.txt.

BOUNDARY CONDITION: provide boundary conditions at four side boudaries. It is called by
FLUXES.

CAL DISPERSION: calculate dispersion terms. The first and second derivatives with respect to
x, y are also calculated in this subroutine. In addition, the dispersion values in ghost cells are
updated in this subroutine. It is called by the main program.

CALCULATE Cm Sm: calculate Cm and Sm used in Wei and Kirby’s internal wave maker
for irregular waves (TMA). Detailed formulation can be found in Shi et al. (2003). The
subroutine is called by INITIALIZATION.

CALCULATE MEAN: calculate mean u v required by the smagorinsky mixing. Mean η is also
calculated. Called by MAIN.

CALCULATE SPONGE: setup sponge layer. It is called by INITIALIZATION.

CONSTRUCTION: second- and third-order interface construction. It is called by FLUXES. It
calls CONSTRUCT X and CONSTRUCT Y.

CONSTRUCTION HO: high order interface construction. It is called by FLUXES. It calls
CONSTRUCT HO X and CONSTRUCT HO Y.

CONSTRUCT HO X: high order interface construction of specific variables in x direction. It is
called by CONSTRUCTION HO.

CONSTRUCT HO Y: high order interface construction of specific variables in y direction. It is
called by CONSTRUCTION HO.

CONSTRUCT X: construct variables in x direction. It is called by CONSTRUCTION.

CONSTRUCT Y: construct variables in y direction. It is called by CONSTRUCTION.

CORRECTOR: corrector time scheme. It was used for a comparison between Predictor-corrector
scheme and Runge-Kutta. It is not suggested using it in the present program.

DelxFun: calculate derivatives with respect to x. It is called by DelxFun.

DelxyFun: calculate derivatives with respect to x and y. It is called by FLUXES when the lower
order construction is applied. It calls DelxFun and DelyFun.
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DelyFun: calculate derivatives with respect to y. It is called by DelxyFun.

DERIVATIVE X: calculate first-derivative respect to x in second order. The subroutine is called
by CAL DISPERSION.

DERIVATIVE X High: calculate first-derivative respect to x in higher-order. The subroutine is
called by CAL DISPERSION.

DERIVATIVE XX: calculate second-derivative respect to x. The subroutine is called by CAL DISPERSION.

DERIVATIVE XY: calculate cross-derivative. The subroutine is called by CAL DISPERSION.

DERIVATIVE Y: calculate first-derivative respect to y in second order. The subroutine is called
by CAL DISPERSION.

DERIVATIVE Y High: calculate first-derivative respect to y in higher-order. The subroutine is
called by CAL DISPERSION.

DERIVATIVE YY: calculate second-derivative respect to y. The subroutine is called by CAL DISPERSION.

ESTIMATE DT: evaluate dt based on CFL criteria. It is called by MAIN.

ESTIMATE HUV: Runge-Kutta solver. It is called by MAIN. It calls GET Eta U V HU HV.

EXCHANGE: update η, u, v,Hu,Hv and MASK in the ghost cells. It is called by MAIN. It
calls PHI COLL.

EXCHANGE DISPERSION: update dispersion variables in the ghost cells. It is called by
MAIN. It calls PHI COLL.

FLUX AT INTERFACE: calculate numerical fluxes at four cell interfaces using the averaging
method. It is called by FLUXES.

FLUX AT INTERFACE HLLC: calculate numerical fluxes at four cell interfaces using HLLC
scheme. It is called by FLUXES. It calls HLLC.

FLUXES: calculate numerical fluxes. It is called by MAIN. It calls CONSTRUCTION lower or-
der or CONSTRUCTION HO for higher order, WAVE SPEED, DelxyFun (for lower order),
FLUX AT INTERFACE HLLC for HLL scheme or FLUX AT INTERFACE for averaging
scheme, and BOUNDARY CONDITION.

GET Eta U V HU HV: calculate η, u, v,Hu and Hv. It is called by ESTIMATE HUV. The
tridiagonal solver is used to get u and v. Froude number cap is applied in this subroutine. It
calls TRIG (wall boundary) or TRIG PERIODIC (periodic boundary). In the parallel mode,
it calls TRIDx and TRIDy.
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GetFile: read data in the global dimension and distribute to all processors in the parallel mode.
Use flag ’-DPARALLEL’ in Makefile to include this subroutine.

GatherVariable: gather variables from all processors to processor 0 in the parallel mode but with
serial tridiagonal solver. Use flag ‘-DTRID NO PARALLEL’ to include this subroutine. It
is called by TRIDxyNoParallel.

HLLC: HLLC scheme. It is called by FLUX AT INTERFACE HLLC.

INDEX: indexing for ghost cells and MPI subdomains. It is called by MAIN.

INITIALIZATION: initialization subroutine. It is called MAIN. It may call WK WAVEMAKER REGULAR WAVE,
WK WAVEMAKER IRREGULAR WAVE, CALCULATE Cm Sm, CALCULATE SPONGE
if applied.

INITIAL GAUSIAN: sample to provide initial Gausian hump. Use flag ‘-DSAMPLE’ in Make-
file to include this subroutine. Parameters are defined in input.txt. The subroutine is called
by INITIALIZATION.

INITIAL HOTSTART: initialization when hotstart option is applied. It is called by MAIN. It
may call INITIAL UVZ, INITIAL SOLITARY WAVE, INITIAL N WAVE, INITIAL RECTANGULAR,
INITIAL WAVE, WK WAVEMAKER REGULAR WAVE, WK WAVEMAKER IRREGULAR WAVE,
CALCULATE Cm Sm, CALCULATE SPONGE if applied.

INITIAL N WAVE: sample to provide initial N wave solution. Use flag ‘-DSAMPLE’ in Make-
file to include this subroutine. Parameters are defined in input.txt. The subroutine is called
by INITIALIZATION.

INITIAL SOLITARY WAVE: sample to provide initial solitary wave solution. Use flag ‘-
DSAMPLE’ in Makefile to include this subroutine. Parameters are defined in input.txt. The
subroutine is called by INITIALIZATION. It calls SUB SLTRY to get parameters.

INITIAL RECTANGULAR: sample of given an initial rectangular hump. Use flag ‘-DSAMPLE’
in Makefile to include this subroutine. Parameters are defined in input.txt. The subroutine is
called by INITIALIZATION.

INITIAL UVZ: read initial u, v, and η data from files defined in input.txt. It is called by INI-
TIALIZATION. It calls GetFile.

MINMOD LIMITER: function of minmod limiter. It is used in CONSTRUCT HO X, and
CONSTRUCT HO Y.

MPI INITIAL: initialize MPI environment.

OneWayCoupling: one-way nesting subroutine. The nesting data read from INITIALIZATION.

26



PHI EXCH: handle float type data exchange between processors in the parallel mode. It is called
by PHI COLL. Use flag ‘-DPARALLEL’ to include this subroutine.

PHI INT EXCH: handle integer type data exchange between processors in the parallel mode. It
is called by UPDATE MASK. Use flag ‘-DPARALLEL’ to include this subroutine.

PREDICTOR: predictor scheme. It was used for a comparison between Predictor-corrector
scheme and Runge-Kutta. It is not suggested using it in the present program.

PREVIEW: output subroutine. It is called by MAIN. It calls PutFile.

PutFile: print out output in files. In the parallel mode, it gathers data from all processors into
processor 0 and prints out in the global dimension. Use flag ’-DPARALLEL’ in Makefile for
the parallel mode. It is called by PREVIEW.

PHI COLL: update data in ghost cells. It is called by EXCHANGE. in the parallel mode, it calls
PHI EXCH which is a major subroutine to handle data exchange between processors.

READ INPUT: read input.txt. It is called by MAIN. It calls GET STRING VAL, GET LOGICAL VAL,
GET INTEGER VAL, GET Float VAL. Input data are written out in LOG.txt.

READ HOTSTART DATA: read saved data for hot start and initialize other variables.

ScatterVariable: scatter variables from processor 0 to all processors in the parallel mode but with
serial tridiagonal solver. Use flag ‘-DTRID NO PARALLEL’ to include this subroutine. It
is called by TRIDxyNoParallel.

SOLITARY WAVE LEFT BOUNDARY: nudging boundary condition of solitary wave at left
boundary. Use flag ‘-DSAMPLE’ in Makefile to include this subroutine. Parameters are
defined in input.txt.

SourceTerms: calculate all source terms including slope term and dispersion terms. It is called
by MAIN.

STATISTICS: calculate statistics of total mass volume, energy, maximum and minimum η, u, v,
Froude number etc.

SPONGE DAMPING: use sponge layers to damp waves Parameters are defined in input.txt.

SUB SLTRY: provide solitary wave solution of Nogu’s equations. It is called by INITIAL SOLITARY WAVE.
Use flag ‘-DSAMPLE’ in Makefile to include this subroutine.

TRI GE: tridiagonal solver. It allows diagonal variables not equal to unit. It is called by
TRIG PERIODIC.

TRIG: tridiagonal solver. It is called by GET Eta U V HU HV. It calls TRI GE.
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TRIDxyNoParallel: no parallel tridiagonal solver but in the parallel mode. It is only for test-
ing. Use flag ‘-DTRID NO PARALLEL’ to include this subroutine. It calls GatherVariable,
TRIG and ScatterVariable.

TRIG PERIODIC: cyclic tridiagonal solver. It is called by GET Eta U V HU HV. It calls
TRI GE.

UPDATE MASK: update mask according to wetting and drying. Also update mask and mask9
in ghost cells.

VANLEER LIMITER: function of Vanleer limiter. It is used in DelxFun and DelyFun.

WAVE SPEED: calculate numerical wave speed needed by the TVD scheme. It is called by
MAIN.

WK WAVEMAKER IRREGULAR WAVE: calculate source function for Wei and Kirby’s in-
ternal wave maker for irregular waves (TMA). Periodic boundary conditions are included.
Parameters are defined in input.txt. The subroutine is called by INITIALIZATION.

WK WAVEMAKER REGULAR WAVE: calculate source function for Wei and Kirby’s inter-
nal wave maker for regular waves. Periodic boundary conditions are included but for certain
wave angles (will ask during a run). Parameters are defined in input.txt. The subroutine is
called by INITIALIZATION.

WRITE HOTSTART DATA: write out data used for hot start.

4.3 Permanent variables

Depth(): still water depth h at element point

DepthNode(): still water depth h at node

DepthX(): still water depth h at x-interface

DepthY(): still water depth h at y-interface

Eta(): surface elevation, for dry point, Eta() = MinDepth - Depth(), MinDepth is specified in
input.txt.

Eta0(): η at previous time level

MASK(): 1 - wet, 0 - dry

MASK STRUC(): 0 - permanent dry point

MASK9: mask to switch from Boussinesq equation to SWE, 1 - Boussinesq, 0 - SWE
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U(): depth-averaged u or u at the reference level (uα) at element

V(): depth-averaged v or v at the reference level (vα) at element

HU(): (h+ η)u at element

HV(): (h+ η)v at element

P(): (h+ η)(u+ U4) at x-interface

Q(): (h+ η)(v + V4) at y-interface

Fx(): numerical flux F at x-interface

Fy(): numerical flux F at y-interface

Gx(): numerical flux G at x-interface

Gy(): numerical flux G at y-interface

Ubar(): U

Vbar(): V

U4(): x-component of U4

V4(): y-component of V4

U1p(): x-component of U ′1

V1p(): y-component of V ′1

EtaRxL(): η Left value at x-interface

EtaRxR(): η Right value at x-interface

EtaRyL(): η Left value at y-interface

EtaRyR(): η Right value at y-interface

HxL(): total depth Left value at x-interface

HxR(): total depth Right value at x-interface

HyL(): total depth Left value at y-interface

HyR(): total depth Right value at y-interface

HUxL(): (h+ η)u Left value at x-interface
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HUxR(): (h+ η)u Right value at x-interface

HVyL(): (h+ η)v Left value at y-interface

HVyR(): (h+ η)v Right value at y-interface

PL(): (h+ η)(u+ U4), Left value at x-interface

PR(): (h+ η)(u+ U4), Right value at x-interface

QL(): (h+ η)(v + V4), Left value at y-interface

QR(): (h+ η)(v + V4), Right value at y-interface

FxL = HUxL*UxL + 1/2*g*(EtaRxL2 + 2*EtaRxL*Depthx)

FxR = HUxR*UxR + 1/2*g*(EtaRxR2 + 2*EtaRxR*Depthx)

FyL = HyL*UyL*VyL

FyR = HyR*UyR*VyR

GxL = HxL*UxL*VxL

GxR = HxR*UxR*VxR

GyL = HVyL*VyL + 1/2*g*(EtaRyL2 + 2*EtaRyL*Depthy)

GyR = HVyR*VyR + 1/2*g*(EtaRyR2 + 2*EtaRyR*Depthy)

4.4 Installation and compilation

FUNWAVE-TVD is distributed in a compressed fie. To install the programs, first, uncompress the
package. Then use

> tar xvf *.tar
to extract files from the uncompressed package. The exacted files will be distributed in two new
directories: /src and /work.

To compile the program, go to /src and modify Makefile if needed. There are several necessary
flags in Makefile needed to specify below.

-DDOUBLE PRECISION: use double precision, default is single precision.

-DPARALLEL: use parallel mode, default is serial mode.

-DSAMPLES: include all samples, default is no sample included.

-DCARTESIAN: Cartesian version, otherwise Spherical version
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-DINTEL: if INTEL compiler is used, this option can make use of FPORT for the RAND() func-
tion

-DMIXING: include Smagorinsky mixing.

-DCOUPLING: nesting mode.

CPP: path to CPP directory.

FC: Fortran compiler.

Then execute
> make

The executable file ‘’mytvd’ will be generated and copied from /src to /work/. Note: use ‘make
clean’ after modifying Makefile.

To run the model, go to /work. Modify input.txt if needed and run.

4.5 Input

Following are descriptions of parameters in input.txt (NOTE: all parameter names are capital
sensitive).

TITLE: title of your case, only used for log file.

SPECIFICATION OF HOT START

HOT START: logical parameter, T for hot start, F for cold start.

FileNumber HOTSTART: number of hotstart file used for a hot start, e.g., 1,2, ...

SPECIFICATION OF MULTI-PROCESSORS

PX: processor numbers in X

PY : processor numbers in Y
NOTE: PX and PY must be consistency with number of processors defined in mpirun com-
mand, e.g., mpirun -np n (where n = px×py)

SPECIFICATION OF WATER DEPTH

DEPTH TYPE: depth input type.

DEPTH TYPE=DATA: from a depth file.

The program includes several simple bathymetry configurations such as

DEPTH TYPE=FLAT: flat bottom, need DEPTH FLAT

DEPTH TYPE=SLOPE: plane beach along x direction. It needs three parameters: slope,SLP,
slope starting point, Xslp and flat part of depth, DEPTH FLAT
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DEPTH FILE: bathymetry file if DEPTH TYPE=DATA, file dimension should be Mglob x Nglob
with the first point as the south-west corner. The read format in the code is shown below.

DO J=1,Nglob

READ(1,*)(Depth(I,J),I=1,Mglob)

ENDDO

DEPTH FLAT: water depth of flat bottom if DEPTH TYPE=FLAT or DEPTH TYPE=SLOPE
(flat part of a plane beach).

SLP: slope if DEPTH TYPE=SLOPE

Xslp: starting x (m) of a slope, if DEPTH TYPE=SLOPE

SPECIFICATION OF RESULT FOLDER

RESULT FOLDER: result folder name, e.g., RESULT FOLDER = /Users/fengyanshi/tmp/

SPECIFICATION OF DIMENSION

Mglob: global dimension in x direction.

Nglob: global dimension in y direction.

SPECIFICATION OF TIME

TOTAL TIME: simulation time in seconds

PLOT INTV: output interval in seconds (Note, output time is not exact because adaptive dt is
used.)

SCREEN INTV: time interval (s) of screen print.

PLOT INTV STATION: time interval (s) of gauge output

HOTSTART INTV: time interval (s) to save hot start data.

SPECIFICATION OF GRID SIZE

DX: grid size(m) in x direction.

DY: grid size(m) in y direction.

SPECIFICATION OF INITIAL CONDITION

INT UVZ : logical parameter for initial condition, default is FALSE
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ETA FILE: name of file for initial η, e.g., ETA FILE= /Users/fengyanshi/work/input/CVV H.grd,
data format is the same as depth data.

U FILE: name of file for initial u, e.g.,U FILE= /Users/fengyanshi/work/input/CVV U.grd, data
format is the same as depth data.

V FILE: name of file for initial v, e.g., V FILE= /Users/fengyanshi/work/input/CVV V.grd, data
format is the same as depth data.

SPECIFICATION OF WAVEMAKER

WAVEMAKER: wavemaker type.

WAVEMAKER = INI REC: initial rectangular hump, need Xc,Yc and WID

WAVEMAKER = LEF SOL: left boundary solitary, need AMP,DEP, and LAGTIME

WAVEMAKER = INI SOL: initial solitary wave, WKN B solution, need AMP, DEP, and
XWAVEMAKER

WAVEMAKER = INI OTH: other initial distribution specified by users

WAVEMAKER = WK REG: Wei and Kirby 1999 internal wave maker, need Xc WK, Tpe-
riod, AMP WK, DEP WK, Theta WK, and Time ramp (factor of period)

WAVEMAKER = WK IRR: Wei and Kirby 1999 TMA spectrum wavemaker, need Xc WK,
DEP WK, Time ramp, Delta WK, FreqPeak, FreqMin,FreqMax, Hmo, GammaTMA, Theta-
Peak

WAVEMAKER = WK TIME SERIES: fft a time series to get each wave component and then
use Wei and Kirby’s ( 1999) wavemaker. Need input WaveCompFile (including 3 columns:
per,amp,pha) and NumWaveComp,PeakPeriod,DEP WK, Xc WK,Ywidth WK

WAVEMAKER = GAUSIAN: initial Gausian hump, need AMP, Xc, Yc, and WID.

AMP: amplitude (m) of initial η, if WAVEMAKER = INI REC, WAVEMAKER = INI SOL,
WAVEMAKER = LEF SOL.

DEP: water depth at wavemaker location, if WAVEMAKER = INI SOL, WAVEMAKER = LEF SOL.

LAGTIME, time lag (s) for the solitary wave generated on the left boundary, e.g., WAVEMAKER
= LEF SOL.

XWAVEMAKER: x (m) coordinate for WAVEMAKER = INI SOL.

Xc: x (m) coordinate of the center of a rectangular hump if WAVEMAKER = INI REC.

Yc: y (m) coordinate of the center of a rectangular hump if WAVEMAKER = INI REC.

WID: width (m) of a rectangular hump if WAVEMAKER = INI REC, or INI GAU.
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Time ramp: time ramp (s) for Wei and Kirby (1999) wavemaker.

Delta WK: width parameter δ for Wei and Kirby (1999) wavemaker. δ = 0.3 ∼ 0.6

DEP WK: water depth (m) for Wei and Kirby (1999) wavemaker.

Xc WK: x coordinate (m) for Wei and Kirby (1999) wavemaker.

Ywidth WK: width (m) in y direction for Wei and Kirby (1999) wavemaker.

Tperiod: period (s) of regular wave for Wei and Kirby (1999) wavemaker.

AMP WK: amplitude (m) of regular wave for Wei and Kirby (1999) wavemaker.

Theta WK: direction (degrees) of regular wave for Wei and Kirby (1999) wavemaker. Note: it
may be adjusted for a periodic boundary case by the program. A warning will be given if
adjustment is made.

FreqPeak: peak frequency (1/s) for Wei and Kirby (1999) irregular wavemaker.

FreqMin: low frequency cutoff (1/s) for Wei and Kirby (1999) irregular wavemaker.

FreqMax: high frequency cutoff (1/s) for Wei and Kirby (1999) irregular wavemaker.

Hmo: Hmo (m) for Wei and Kirby (1999) irregular wavemaker.

GammaTMA, TMA parameter γ for Wei and Kirby (1999) irregular wavemaker.

ThetaPeak: peak direction (degrees) for Wei and Kirby (1999) irregular wavemaker.

Sigma Theta: parameter of directional spectrum for Wei and Kirby (1999) irregular wavemaker.

SPECIFICATION OF PERIODIC BOUNDARY CONDITION

( Note: only south-north periodic condition was implemented)

PERIODIC: logical parameter for periodic boundary condition, T - periodic, F - wall boundary
condition.

SPECIFICATION OF SPONGE LAYER

SPONGE ON: logical parameter, T - sponge layer, F - no sponge layer.

Sponge west width: width (m) of sponge layer at west boundary.

Sponge east width: width (m) of sponge layer at east boundary.

Sponge south width: width (m) of sponge layer at south boundary.
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Sponge north width width (m) of sponge layer at north boundary

R sponge: decay rate in sponge layer. Its values are between 0.85 ∼ 0.95.

A sponge: maximum damping magnitude. The value is ∼ 5.0.

SPECIFICATION OF OBSTACLES

OBSTACLE FILE: name of obstacle file. 1 - water point, 0 - permanent dry point. Data dimension
is (Mglob × Nglob). Data format is the same as the depth data.

SPECIFICATION OF PHYSICS

DISPERSION: logical parameter for inclusion of dispersion terms. T - calculate dispersion, F -
no dispersion terms

Gamma1: parameter for linear dispersive terms. 1.0 - inclusion of linear dispersive terms, 0.0 -
no linear dispersive terms.

Gamma2: parameter for nonlinear dispersive terms. 1.0 - inclusion of nonlinear dispersive terms,
0.0 - no nonlinear dispersive terms.

Gamma1=1.0, Gamma2=0.0 for NG’s equations. Gamma1=1.0, Gamma2=1.0 for the fully
nonlinear Boussinesq equations.

Gamma3: parameter for linear shallow water equations (Gamma3 = 1.0). When Gamma3 = 0.0,
Gamma1 and Gamma2 automatically become zero.

Beta ref: parameter β defined for the reference level. β = -0.531 for NG’s and FUNWAVE
equations.

SWE ETA DEP: ratio of height/depth for switching from Boussinesq to NSWE. The value is ∼
0.80.

Cd: bottom friction coefficient.

SPECIFICATION OF NUMERICS

Time Scheme: stepping option, Runge Kutta or Predictor Corrector (not suggested for this ver-
sion).

HIGH ORDER: spatial scheme option, FOURTH for the fourth-order, THIRD for the third-order,
and SECOND for the second-order (not suggested for Boussinesq modeling).

CONSTRUCTION: construction method, HLL for HLL scheme, otherwise for averaging scheme.

CFL: CFL number, CFL ∼ 0.5.
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FroudeCap: cap for Froude number in velocity calculation for efficiency. The value could be 5 ∼
10.0.

MinDepth: minimum water depth (m) for wetting and drying scheme. Suggestion: MinDepth =
0.001 for lab scale and 0.01 for field scale.

MinDepthFrc: minimum water depth (m) to limit bottom friction value. Suggestion: MinDepth-
Frc = 0.01 for lab scale and 0.1 for field scale.

SHOW BREAKING: logical parameter to calculate breaking index. Note that breaking is calcu-
lated using shock wave capturing scheme. The index calculated here is based on Kennedy et
al. (2000).

Cbrk1: parameter C1 in Kennedy et al. (2000).

Cbrk2: parameter C2 in Kennedy et al. (2000).

SPECIFICATION OF OUTPUT VARIABLES

NumberStations: number of station for output. If NumberStations > 0, need input i,j in STA-
TION FILE

DEPTH OUT: logical parameter for output depth. T or F.

U: logical parameter for output u. T or F.

V: logical parameter for output v. T or F.

ETA: logical parameter for output η. T or F.

MASK: logical parameter for output wetting-drying MASK. T or F.

MASK9: logical parameter for output MASK9 (switch for Boussinesq/NSWE). T or F.

SourceX: logical parameter for output source terms in x direction. T or F.

SourceY: logical parameter for output source terms in y direction. T or F.

P: logical parameter for output of momentum flux in x direction. T or F.

Q: logical parameter for output of momentum flux in y direction. T or F.

Fx: logical parameter for output of numerical flux F in x direction. T or F.

Fy: logical parameter for output of numerical flux F in y direction. T or F.

Gx: logical parameter for output of numerical flux G in x direction. T or F.

Gy: logical parameter for output of numerical flux G in y direction. T or F.

AGE: logical parameter for output of breaking age. T or F.
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4.6 Input for the spherical code

All input parameters, except the following grid information, are the same as for the Cartesican
code.

Lon West: longitude (degrees) of west boundary.

Lat South: latitude (degrees) of south boundary.

Dphi: dφ (degrees)

Dtheta: dθ (degrees)

In addition, it is not necessary to specify Gamma2 (for nonlinear dispersive terms) in the spher-
ical code.

Another feature of the spherical code is that a computational grid can be a stretched grid. For
a stretched grid, a user should set StretchGrid = T and provide grid files for DX and DY and a file
for Coriolis parameters at each grid point. For example,

DX FILE = dx str.txt
DY FILE = dy str.txt
CORIOLIS FILE = cori str.txt

4.7 Model nesting

The present version has a capability for one-way nesting. The nesting scheme passes surface
elevation and velocity components calculated from a large domain to a nested small domain through
ghost cells at nesting boundaries. To run a nested model, the following procedures should be
performed.

1. The coupling option in Makefile should be defined as ’-Dcoupling’ and the program should
be re-compiled.

2. Prepare nesting data using the output of a large-domain model. The following is an example
of the data format.

nesting data
Number of data:
100 Time series (s):
0.0000000
1.0000000
2.0000000
3.0000000
4.0000000
...
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99.000000
EAST boundary
Num of points,Start number J
0 0
WEST boundary
Num of points,Start number J
160 20
U,V,Z data ...
0.000 0.000 0.000 ...
...
SOUTH boundary
Num of points,Start number I
0 0
NORTH boundary
Num of points,Start number I
0 0

The example above is a case that a model nesting takes place at the WEST (left) boundary
of a small domain. Boundaries are defined with the order: EAST, WEST, SOUTH, and
NORTH. If the num of points of a boundary is larger than zero, the program will read a time
series of (u, v, η) below ’U,V,Z data ...’. The read format is

DO K=1,N COUPLING DATA
READ(1,*)(U COUPLING WEST(I,K),I=1,N COUPLING WEST)
READ(1,*)(V COUPLING WEST(I,K),I=1,N COUPLING WEST)
READ(1,*)(Z COUPLING WEST(I,K),I=1,N COUPLING WEST)
ENDDO

where N COUPLING DATA is ’Number of data’ and N COUPLING WEST is Num of
points at the WEST boundary.

3. Specify the file of coupling data in input.txt

! —————– COUPLING ————————-
! if do coupling, have to set -DCOUPLING in Makefile
COUPLING FILE = coupling.txt
where ’coupling.txt’ is the file saved in procedure 2.

4.8 Output

The output files are saved in the result directory defined by RESULT FOLDER in input.txt. For
outputs in ASCII, a file name is a combination of variable name and an output series number such
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eta 0001, eta 0002, .... The format and read/write algorithm are consistent with a depth file. Output
for stations is a series of numbered files such as sta 0001, sta 0002 ....

The NetCDF output format is under development.

5 Examples

The model has been validated extensively using laboratory experiments for wave shoaling and
breaking as in the FUNWAVE manual by Kirby et al. (1998). In addition, Tehranirad et al. (2011)
used FUNWAVE-TVD Version 1.0 to carry out tsunami benchmark testing in conjunction with the
National Tsunami Hazard Mitigation Program. Tests of mass conservation and convergence are
included in Tehranirad et al. (2011).

5.1 Breaking waves on a beach (Example 1 in the example directory)

Hansen and Svendsen (1979) carried out laboratory experiments of wave shoaling and breaking on
a beach. Waves were generated on a flat bottom a 0.36 m depth, and the beach slope was 1:34.26.
The experiments included several cases including plunging breakers, plunging-spilling breakers
and spilling breakers. In this paper, we simulate two typical cases: a plunging breaker and a
spilling breaker, respectively. The wave height and wave period are 4.3 cm and 3.33 s, respectively,
for the plunging case, and 6.7 cm and 1.67 s for the spilling case.

Although the shock-capturing breaking algorithm used in Boussinesq wave models has been
examined by previous researchers (e.g., Tonelli and Petti, 2009, Shiach and Mingham, 2009 and
others), there is a concern about its sensitivity to grid spacing. In this study, we adopted three grid
sizes, dx = 0.05 m, 0.025 m and 0.0125 m, respectively, for each cases. Figure 3 shows comparisons
of wave height and wave setup between measured data and numerical results from model runs with
different grid sizes. The wave breaking location of wave setup/setdown predicted by the three runs
are in agreement with the data, however, the predicted maximum wave heights are slightly different.
Results from the dx=0.25 m and 0.0125 m grids are very close, indicating a convergence with grid
refinement. All three models underpredict the peak wave height at breaking and overpredict wave
height inside of the surfzone. This prediction trend was also found in Kennedy et al. (2000, Figure
2). About 10% underprediction of peak wave height can be found in our tests with dx = 0.025 m
and 0.0125 m, which is similar to Kennedy et al. (2000). The model with a coarser grid (dx = 0.05
m) underpredicted the maximum wave height by 20%.

To find the cause of the large underprediction of peak wave height in the coarser grid model,
in Figure 4, we show snapshots of surface elevation from model results with dx = 0.025 m and
0.050 m at different times. The model with the finer grid resolution switched from the Boussinesq
equations to NSWE around t = 19.9s (the model with the coarser grid switched slightly later) at
the point where the ratio of surface elevation to water depth reached the threshold value of 0.8.
Then, a wave is damped at the sharp front and generates trailing high frequency oscillations. The
comparison of wave profiles at an early time (i.e. t= 18.6 s) shows that the coarser grid model
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underpredicts wave height before the Boussinesq-NSWE switching, indicating that the underpre-
diction is not caused by the shock-capturing scheme, but by the numerical dissipation resulting
from the coarse grid resolution.

For the spilling breaker case, the models with three different grid sizes basically predicted
slightly different wave peaks as in the plunging wave case. Figure 5 shows results with dx = 0.25
m, where the model provides very good predictions of wave shoaling to near the breaking limit.
Once again, the model overpredicts wave height inside the surf zone.

Some necessary definitions in the input file, input.txt, for the plunging breaker case are

! ——————–DEPTH————————————-
DEPTH TYPE = SLOPE
DEPTH FLAT = 0.36
SLP = 0.0292
Xslp = 55.0
! ——————DIMENSION—————————–
Mglob = 3001
Nglob = 3
! —————– TIME———————————-
DX = 0.025
DY = 0.2 ! give any larger value than DX for 1-D case
! —————-WAVEMAKER——————————
WAVEMAKER = WK REG
Xc WK = 45.0
Tperiod = 3.33
AMP WK = 0.0185
DEP WK = 0.36
Theta WK = 0.0
Time ramp = 1.0
Delta WK = 0.3
! —————- SPONGE LAYER ————————
SPONGE ON = T
Sponge west width = 10.0
Sponge east width = 0.0
Sponge south width = 0.0
Sponge north width = 0.0
R sponge = 0.95
A sponge = 5.0
! —————-PHYSICS——————————
DISPERSION = T
Gamma1 = 1.0
Gamma2 = 1.0
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Gamma3=1.0
Beta ref=-0.531
SWE ETA DEP = 0.8
Cd = 0.0 ! Cd is not sensitive for this case
! —————-NUMERICS—————————-
Time Scheme = Runge Kutta
HIGH ORDER = FOURTH
CONSTRUCTION = HLLC
CFL = 0.5
! ————–WET-DRY——————————-
MinDepth=0.001
MinDepthFrc = 0.001
! —————–OUTPUT—————————–
DEPTH OUT = T
ETA = T
MASK = T

A MATLAB script, plot surface ele.m, is used for plots.

5.2 Random wave shoaling and breaking on a slope (Example 2 in the example
directory)

To study random-wave properties of shoaling and breaking, Mase and Kirby (1992) conducted a
laboratory experiment of random wave propagation over a planar beach. The experiment layout is
shown in Figure 6, where a constant depth of 0.47 m on the left connects to a constant slope of
1:20 on the right. Two sets of random waves with peak frequencies of 0.6 Hz (run 1) and 1.0 Hz
(run 2) were generated by the wavemaker on the left. The target incident spectrum was a Pierson-
Moskowitz spectrum. Wave gauges at depths h = 47, 35, 30, 25, 20, 17.5, 15, 12.5, 10, 7.5, 5, and
2.5 cm collected time series of surface elevation.

Wei and Kirby (1995) carried out a simulation of run 2 without wave breaking. Later, Kirby
et al. (1998) and Kennedy et al. (2000) carried out the same simulation with wave breaking. The
present model was set up following Kirby et al. (1998), who used an internal wavemaker located
at the toe of the slope where surface elevation is measured (gauge 1).

A FFT was used to transform between the time domain and frequency domain data required
by the wavemaker. A MATLAB script, (fft4wavemaker.m ) to perform this transform is included
in the example. The script reads the measured data from the file called r2d470.dat, and saves
calculated wave amplitude, period and phase information for each component in the file named as
wavemk per amp pha.txt. The low and high-frequency cutoffs are 0.2 and 10.0 Hz, respectively.

The simulation time is the same as the time length of data collection. The computational
domain is from x = 0 m to 20 m with a grid size of 0.04 m. The toe of the slope starts at x = 10 m.
A sponge layer is specified at the left side boundary, to absorb reflected waves, but no sponge layer
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Figure 3: Comparisons of wave height (upper panel) and wave setup (lower panel) between mea-
sured data and model results from grid resolutions of dx = 0.0125 m, 0.025 m and 0.050 m, respec-
tively. Case: plunging breaker.
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Figure 4: Snapshots of surface elevation at t = 17.4, 18.6 and 19.9 s from models with grid resolu-
tions of dx = 0.025 (solid lines) and 0.050 m (dashed lines).
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Figure 5: Model/data comparisons of wave height (upper panel) and wave setup (dx = 0.025 m).
Case: spilling breaker.
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is needed on the right boundary, which differs from Kirby et al. (1998) who used the slot method
combined with a sponge layer at the end of the domain.

We present the model results for run 2 and compare with the experimental data measured at the
other 11 gauges shown in Figure 6. Figure 7 shows model results (dashed lines) and measured data
(solid lines) from t = 20 s to t = 40 s at those gauges. Both model and data show that most waves
start breaking at the depth h= 15 cm. Except for small discrepancies for wave phases, the model
reproduces the measured waveform quite well.

To further demonstrate the applicability of the model, we performed third moment computa-
tions of the resulting time series of surface elevation. Normalized wave skewness and asymmetry
were calculated for both measured and modeled time series of surface elevation according to the
following formulations,

skew =
< η3 >

< η2 >3/2

asym =
< H(η)3 >
< η2 >3/2

(78)

where H denotes the Hilbert transform, <> is the mean operator, and the mean has been removed
from the time series of surface elevation.

Figure 8 shows the comparisons of skewness and asymmetry between the model results and
experiment data. The model predicted skewness and asymmetry reasonably well with a slightly
overprediction of wave skewness inside the surf zone.

It is worth mentioning that Kirby et al. (1998) employed more frequent use of numerical
filtering, especially after wave breaking, so that the model run was stable over the entire data time
series. The present model did not encounter any stability problem without filtering.

Some necessary definitions in the input file, input.txt, are

! ——————–DEPTH————————————-
DEPTH TYPE = SLOPE
DEPTH FLAT = 0.47
SLP = 0.05
Xslp = 10.0

! ——————DIMENSION—————————–
Mglob = 500
Nglob = 3

! —————– TIME———————————-
TOTAL TIME = 716.0
PLOT INTV = 10.0
PLOT INTV STATION = 0.05
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Figure 6: Experiment layout of Mase and Kirby (1992).
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wave gauges in Mase and Kirby (1992).
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Figure 8: Comparison of skewness (◦) and asymmetry (×) at different water depths. Solid lines
are experiment data ( Mase and Kirby, 1992). Dashed lines are numerical results
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SCREEN INTV = 1.0

! —————–GRID———————————-
DX = 0.04
DY = 0.10

! —————-WAVEMAKER——————————
WAVEMAKER = WK TIME SERIES
NumWaveComp = 1505
PeakPeriod = 1.0
WaveCompFile = ../fft/wavemk per amp pha.txt
! Wei and Kirby 1999
Time ramp = 1.0
Delta WK = 0.4 ! width parameter 0.3-0.6
DEP WK = 0.47
Xc WK = 10.0
Ywidth WK = 10000.0 ! give any bigger value than the width of tank

! —————- SPONGE LAYER ————————
SPONGE ON = T
Sponge west width = 2.0
Sponge east width = 0.0
Sponge south width = 0.0
Sponge north width = 0.0
R sponge = 0.90
A sponge = 5.0

! —————-PHYSICS——————————
DISPERSION = T
Gamma1 = 1.0
Gamma2 = 1.0
Gamma3 = 1.0
Beta ref=-0.531
SWE ETA DEP = 0.80
Cd = 0.001 ! not sensitive for this case

! —————-NUMERICS—————————-
Time Scheme = Runge Kutta
HIGH ORDER = FOURTH
CONSTRUCTION = HLLC
CFL = 0.5
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! ————–WET-DRY——————————-
MinDepth=0.001
MinDepthFrc = 0.001
! —————–OUTPUT—————————–
NumberStations = 12
STATIONS FILE = gauges 004.txt
DEPTH OUT = T
ETA = T

Model output at 12 gauges are saved in sta 0001, sta 0002, ..., sta 0012. Use MATLAB scripts,
comp mkskew.m and cmop series.m for plots.

5.3 Wave propagation over a shoal: Berkhoff et al. (1982) (Example 3 in the exam-
ple directory)

The laboratory experiment of wave propagation over a shoal conducted by Berkhoff et al. (1982)
has served as a standard test for examining numerical model performances in predicting wave
shoaling, refraction, diffraction and nonlinear dispersion. Kirby et al. (1998) showed that the
previous version of FUNWAVE accurately reproduces measured wave heights in the experiments.
Here, in this manual, we repeat this test exactly following Kirby et al. (1998).

The bottom topography is shown in Figure 9, which is generated using the same program in
Kirby et al., (1998). The topography consists of an elliptic shoal resting on a plane beach with
a constant slope 1/50. Bottom contours on the slope are oriented at an angle of 20◦ to the y
axis. Regular waves with period of 1s and amplitude of 2.32cm are generated by a wavemaker at
x = −10m and propagate across the domain. Experiment data are collected along 8 transects as
shown in the figure. Two vertical side walls are located at y = −10m and y = 10m. Detailed
information on the geometry may be obtained in Berkhoff et al. (1982) or Kirby and Dalrymple
(1984).

The computational domain used in the model is the same as in Figure 9 except for two sponge
layers with a width of 2m sitting behind wavemaker and on the end of the beach. The source
function for generating the corresponding monochromatic wave is located at the wavemaker.

Thirty waves are simulated in order to get a quasi-stable wave condition. The time series of
surface elevation in the last 5 seconds (5 wave periods) are used for the wave height estimation at
each grid point. Matlab post-processing scripts, calcheight.m and showheight.m are provided in
the example. Figure 10 shows comparisons between model results and experimental data along the
eight transects where measurements were made. The model results of wave height agree well with
experimental data, in both sections parallel or normal to incident wave direction. The results from
the present model are also similar to that from the previous version of FUNWAVE in Kirby et al.
(1998).
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Figure 9: Experiment layout for wave focusing experiment of Berkhoff et al. (1982).
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Figure 10: Comparisons of wave height along specified sections between the model (solid lines)
and experiment data (circles).
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Parameters and other definitions specified in input.txt are listed below.

! ——————–DEPTH————————————-
DEPTH TYPE = DATA
DEPTH FILE = ../input/depth.txt

! ——————DIMENSION—————————–
Mglob = 600
Nglob = 200

! —————– TIME———————————-
TOTAL TIME = 30.0
PLOT INTV = 0.02
PLOT INTV STATION = 0.02
SCREEN INTV = 0.1

! —————–GRID———————————-
DX = 0.05
DY = 0.10

! —————-WAVEMAKER——————————
WAVEMAKER = WK REG
Time ramp = 1.0
Delta WK = 0.5 ! width parameter 0.3-0.6
DEP WK = 0.45
Xc WK = 3.0
Ywidth WK = 10000.0 ! give any larger value than the width of flume
Tperiod = 1.0
AMP WK = 0.0232
Theta WK = 0.0

! —————- SPONGE LAYER ————————
SPONGE ON = T
Sponge west width = 2.0
Sponge east width = 2.0
Sponge south width = 0.0
Sponge north width = 0.0
R sponge = 0.90
A sponge = 5.0

! —————-PHYSICS——————————
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DISPERSION = T
Gamma1 = 1.0
Gamma2 = 1.0
Gamma3 = 1.0
Beta ref=-0.531
SWE ETA DEP = 0.80
Cd = 0.0

! —————-NUMERICS—————————-
Time Scheme = Runge Kutta
HIGH ORDER = FOURTH
CONSTRUCTION = HLLC
CFL = 0.5

! ————–WET-DRY——————————-
MinDepth=0.001
MinDepthFrc = 0.001

! —————–OUTPUT—————————–
NumberStations = 0
DEPTH OUT = T
ETA = T

5.4 Solitary wave on a conical island (Example 4 in the example directory)

Laboratory experiments on the interaction between solitary waves and a conical island were con-
ducted by Briggs et al (1995). The three cases from this test illustrate the important fact that runup
and inundation heights on the sheltered back sides of an island can exceed the incident wave height
on the exposed front side, due to trapping of wave fronts propagating around the island circum-
ference. These tests have been used in a number of validation studies for a variety of models,
including nonlinear shallow water equations (Liu et al 1995) and Boussinesq equations (Chen et
al, 2000). The benchmark test is specified in Section 3.3 of Appendix A of Synolakis et al (2007).

Large-scale laboratory experiments were performed at Coastal Engineering Research Center,
Vicksburg, Mississippi, in a 30m-wide, 25m-long, and 60cm-deep wave basin (Figure 11). In the
physical model, a 62.5cm-high, 7.2m toe-diameter, and 2.2m crest-diameter circular island with
a 1:4 slope was located in the basin (Figure 12). Experiments were conducted at depth of 32cm,
with three different solitary waves (H/d=0.045, 0.091, 0.181). Water-surface time histories were
measured with 27 wave gages located around the perimeter of the island (Figure 13).

For this benchmark test, time histories of the surface elevation around the circular island are
given at four locations, i.e., in the front of the island at the toe (Gauge 6) and gauges closest to the
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Figure 11: View of conical island(top) and basin(bottom)(from Synolakis et al (2007, Figure A16)).

Figure 12: Definition sketch for conical island. All dimensions are in cm (from Synolakis et al
(2007, Figure A17)).
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Figure 13: Schematic gauge locations around the conical island(from Synolakis et al (2007, Figure
A18)).
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Figure 14: Comparison of computed and measured time series of free surface for H/d =
0.045.Solid lines: measured, Dashed lines: Computed.

Gauge Number
H/d 6 9 16 22
0.045 6.0 13.2 0.1 18.9
0.091 3.2 16.6 11.6 0.26
0.181 1.6 13.33 13.8 13.3

Table 1: Percent error of predicted maximum runup calculated for each gauge in conical island test.

shoreline with the numbers 9, 16, and 22 located at the 0◦, 90◦, and 180◦ radial lines (Figure 13). A
grid size of ∆x = 0.10m is considered for proper numerical simulation of this benchmark. Figures
14-16 shows the comparison between the laboratory data with numerical calculations. Table 1
represents the error of the maximum runup for each gauge for different wave heights.

Input parameters in the tests are listed as below.

! ——————–DEPTH————————————-
DEPTH TYPE = DATA
DEPTH FILE = ../input/depth.txt

! ——————DIMENSION—————————–
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Figure 15: Comparison of computed and measured time series of free surface for H/d =
0.091.Solid lines: measured, Dashed lines: Computed.
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Figure 16: Comparison of computed and measured time series of free surface for H/d =
0.181.Solid lines: measured, Dashed lines: Computed.
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Mglob = 702
Nglob = 602

! —————– TIME———————————-
TOTAL TIME = 25.0
PLOT INTV = 1.0
PLOT INTV STATION = 0.05
SCREEN INTV = 1.0

! —————–GRID———————————-
DX = 0.05
DY = 0.05

! —————-WAVEMAKER——————————
WAVEMAKER = INI SOL
AMP = 0.0144 ! 0.02912 for case B and 0.05792 for case C
DEP = 0.32
LAGTIME = 5.0
XWAVEMAKER = 8.0

! —————- SPONGE LAYER ————————
SPONGE ON = F

! —————-PHYSICS——————————
DISPERSION = T
Gamma1 = 1.0
Gamma2 = 1.0
Gamma3 = 1.0
Beta ref=-0.531
SWE ETA DEP = 0.80
Cd = 0.0 ! note: not sensitive, could give a small value like 0.001

! —————-NUMERICS—————————-
Time Scheme = Runge Kutta
HIGH ORDER = FOURTH
CONSTRUCTION = HLLC
CFL = 0.5

! ————–WET-DRY——————————-
MinDepth=0.001
MinDepthFrc = 0.001
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! —————–OUTPUT—————————–
NumberStations = 7
STATIONS FILE = gauges.txt
DEPTH OUT = T
ETA = T
Hmax = T
MASK = T

The results of surface elevation at seven gauges are saved as sta 0001 ... sta 0007 as specified
in input.txt. A post-processing MATLAB script called BM6 loader a.m for case A can be used for
model/data comparisons.

5.5 Solitary wave runup on a shelf with an island (Example 5 in the example direc-
tory)

In this test, we performed a simulation of the solitary wave runup measured recently in a large
wave basin at Oregon State University’s O.H. Hinsdale Wave Research Laboratory. The basin is
48.8 m long, 26.5 m wide, and 2.1 m deep. A complex bathymetry has been constructed, which
consists of a 1:30 slope planar beach connected to a triangle shaped shelf and a conical island on
the shelf as shown in Figure 17. Solitary waves were generated on the left side by a piston-type
wavemaker. Surface elevation and velocity were collected at many locations by wave gauges and
ADV’s in alongshore and cross-shore arrays (See Swigler and Lynett, 2011 for details). Figure 17
shows wave gauges (circles) and ADV’s (triangles) used for model/data comparisons in the present
study. Gauge 1 - 9 were located at (x, y) = (7.5, 0.0), (13.0, 0.0), (21.0 0.0), (7.5 5.0), (13.0 5.0),
(21.0 5.0), (25.0 0.0), (25.0 5.0) and (25.0, 10.0), respectively. ADV 1 - 3 were located at (13.0
0.0), (21.0, 0.0) and (21.0, -5.0), respectively.

The modeled bathymetry was constructed by combining the measured data of the shelf and the
analytical equation of the cone, which was used for the design of the island in the experiment. The
computational domain was modified by extending the domain from x = 0.0 m to -5.0 m with a
constant water depth of 0.78 m in order to use a solitary wave solution as an initial condition. The
width of the computational domain in the y direction is the same as OSU’s basin. Grid spacing
used in the model is 0.1 m in both directions. A solitary wave solution based on Nwogu’s extended
Boussinesq equations was used with centroid located at x = 5.0 The wave height is 0.39 m as that
used in the laboratory experiment.

Figure 18 shows results of computed water surfaces at t= 6.4 s, 8.4 s and 14.4 s, respectively.
The wave front becomes very steep as the wave climbs on the shelf, which was well captured by
the model. The wave scattering pattern is clearly seen in the bottom panel of Figure 18. Wave
breaking on the shelf was observed in the laboratory experiment and was also seen in the model.
Figure 19 shows the variation in time stepping during the simulation. The time step dropped to a
minimum, at around t = 6.5 s, as the wave collided with the island (top panel of figure 18). The
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Figure 17: Bathymetry contours (in meters) and measurement locations used in model/data com-
parisons. Circles: pressure gauges, triangles: ADV.
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Figure 18: Modeled water surface at (top) t = 6.4 s, (middle) t =8.4 s, (bottom) t =14.4 s.
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Figure 19: Time step variation.

local Froude number reached a maximum at t = 6.5 s, reducing the value of the time step based on
(42).

Figure 20 shows time series of modeled surface elevations and measurements at Gauge 1 - 9
(from top to bottom). Good agreement between model and data is found at the gauge in front of
the island (Gauge 1, top panel), as the model successfully predicts the solitary wave propagation
and its reflection from the shore. The model also captures the collision of edge waves propagating
around the two sides of the island, as indicated at the gauge behind the island (Gauge 3). The model
predicts the timing of wave collision well but over-predicts the peak of wave runup. The model/data
comparisons at Gauges 5, 6, 8, and 9, which are located at the north-side shelf, indicates that the
model predicts wave refraction and breaking on the shelf reasonably well.

Figure 21 shows model/data comparisons of velocity time series in the x-direction at ADV 1
(top) and ADV2 (bottom). The model predicts the peak velocity and the entire trend of velocity
variation in time at both locations. An underprediction of the seaward velocity is found at ADV
2. The velocity in the y-direction was not compared at ADV 1 and ADV2 because the measured
values were too small. Figure 22 shows the u and v velocity components in the x and y directions
at ADV 3, and shows that the model predicts the velocity components in both x and y directions
well.

The input parameters for this test are listed below.

! ——————–DEPTH————————————-
DEPTH TYPE = DATA
DEPTH FILE = ../input/depth wkshop.txt
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Solid line: model, stars: data.
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! ——————DIMENSION—————————–
Mglob = 501
Nglob = 261

! —————– TIME———————————-
TOTAL TIME = 45.0
PLOT INTV = 0.2
PLOT INTV STATION = 0.2
SCREEN INTV = 0.2

! —————–GRID———————————-
DX = 0.1
DY = 0.1

! —————-WAVEMAKER——————————
WAVEMAKER = INI SOL
AMP = 0.39
DEP = 0.78
LAGTIME = 5.0
XWAVEMAKER = 10.0 ! note that means x = 5 m because the domain starts at x = -5

! —————- SPONGE LAYER ————————
SPONGE ON = F

! —————-PHYSICS——————————
DISPERSION = T
Gamma1 = 1.0
Gamma2 = 1.0
Gamma3 = 1.0
Beta ref=-0.531
SWE ETA DEP = 0.80
Cd = 0.001

! —————-NUMERICS—————————-
Time Scheme = Runge Kutta
HIGH ORDER = FOURTH
CONSTRUCTION = HLLC
CFL = 0.5

! ————–WET-DRY——————————-
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MinDepth=0.001
MinDepthFrc = 0.001

! —————–OUTPUT—————————–
DEPTH OUT = T
U = T
V = T
ETA = T
MASK = T

Several post-processing procedures are performed in order to get model/data comparisons.
First, read result.m is used to obtained time series of η at 9 pressure gauges , and u and v at 3
ADV locations. Then, plot WG.m is used for comparisons of surface elevation at the 9 gauges,
plot ADV AB.m for comparisons of u at ADV 1 and 2, and plot ADV C.m for u and v at ADV 3.
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