
CHAPTER 60 

Shoaling and Reflection of Nonlinear Shallow Water Waves 

l ? Padmaraj Vengayil and James T. Kirby 

The formulation for shallow water wave shoaling and refraction- 
diffraction given by Liu et al (1985) is extended to include reflected 
waves. The model is given in the form of coupled K-P equations for 
forward and backward propagation. Shoaling on a plane beach is 
studied using the forward-propagating model alone. Non-resonant 
reflection of a solitary wave from a slope and resonant reflection of 
periodic waves by sinusoidal bars are then studied. 

Introduction 

Recently, Liu et^ _al_ (1985) have developed a set of coupled para- 
bolic equations to study the combined refraction and diffraction of 
time-periodic waves in shallow water over two-dimensional topography. 
Derivations in that study were based both on the Boussinesq equations 
for variable depth (Peregrine, 1972) and a variable depth form of the 
equation of Kadomtsev and Petviashvili (1970) (K-P), leading to simi- 
lar results. The resulting equations model only the incident wave and 
neglect the reflected wave component. The problem of the neglected 
reflected wave component is important, both to the prediction of 
shoaled wave heights over gentle slopes and to the prediction of waves 
propagated over undular nearshore topography, which can lead to 
significant reflection by means of a resonance mechanism. 

In this study, we address several questions of accuracy of pre- 
dictions of the forward-scattered parabolic approximation which were 
not addressed in the previous study. In particular, we study the 
shoaling of a normally incident wave on a plane beach and analyze 
results both in terms of wave-height and wave form prediction in 
comparison with laboratory data. We then formulate coupled equations 
for incident and reflected waves and study wave reflection in several 
situations. 

Model Formulation 

Following a usual procedure for obtaining coupled parabolic equa- 
tions for strictly monochromatic waves, we instead study the linear 

Graduate Student, Coastal and Oceanographic Engineering Department, 
University of Florida, Gainesville, FL (presently, Department of Civil 
Engineering, Massachusetts Institute of Technology, Cambridge, MA) 

2 
Assistant Professor, Coastal and Oceanographic Engineering Department 

University of Florida, Gainesville, FL 

794 



NONLINEAR SHALLOW WATER WAVES 795 

nondispersive wave equation for arbitrary surface displacement 
n(x,y,t). Letting n = n+ + n~, with r\+(~> denoting forward (backward) 
propagating components of the wave field (with respect to direction 
x), we obtain a set of equations which are coupled through the local 
bottom variations. The equations are extended to include weakly 
dispersive and weakly nonlinear effects, yielding model equations of 
the form 
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c t   x 4h 
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where h(x,y) is the local water depth and c(x,y) = (gh) '2 . We subse- 
quently neglect y-variations and study x-direction propagation alone 
for the remainder of this study. Details of the derivation may be 
found in the report by Vengayil and Kirby (1986). For the case of 
time-aperiodic motions, equations (1) are altered to RLW form and 
solved conveniently using a variation of the three time level scheme 
of Eilbeck and McGuire (1977). For the case of wave forms n+, r\~ 
which vanish as |x [ -*-00, it is further possible to show that equations 
(1) lead to the mass conservation law 
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where XQ is some arbitrary station and 
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represents  the flux of mass across station XQ.  Taking the limit xn->—«° 
then gives 

dt 
ri dx 

dt / n dx - / c ndx 
x 

/  ndx = constant (4) 
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indicating   exact   mass   conservation.      For   the   case   of   weak  reflection 
with 0(|n~|)~0(hx)»0(|n+|),   the  source  (sink)   term is  altered  to 

/    cndx = /    c n+dx + 0(|c   |2) (5) 

and the conclusions on mass balance in the variable coefficient KdV 
equation given by Miles (1979) are recovered. 

For the case of time-periodic motions, the surface displacements 
n+, n~ may be expanded in Fourier series with slowly-varying modal 
amplitudes; we then solve the coupled O.D.E. evolution equations for 
the amplitudes. 

Shoaling of Regular Waves 

We first study the shoaling of a regular wave on a plane beach as 
a means of further testing the accuracy of the model developed by Liu 
et al (1985). Data for the height and wave-form of shoaling waves 
were obtained from the results presented by Buhr Hansen and Svendsen 
(1979) and further described by Svendsen and Buhr Hansen (1978) and 
Buhr Hansen (1980). Figure 1 shows the configuration of the wave 
flume used in the tests. The five longest wave conditions were chosen 
for study; parameters for the chosen tests are shown in Table 1. 

Piston Type Wove nston lyp< 
f   Generator 

Figure 1.  Experimental set-up of Buhr Hansen and Svendsen (1979). 

Table 1 Wave parameters at the wavemaker for the test considered from 
Buhr Hansen and Svendsen (1979). 

Buhr Hansen 
& Svendsen 
Test No. 

HQ(m) 
(actual) 

H 
0 

T(sec) 

2, 
2  wh0 

U = g % 

051071 0.067 0.090 2.0 0.362 0.248 

051041 0.037 0.051 2.0 0.362 0.140 

041071 0.070 0.097 2.5 0.232 0.418 

041041 0.040 0.056 2.5 0.232 0.242 

031041 0.040 0.056 3.33 0.130 0.445 
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The model equations were developed by neglecting the wave 
reflected from the slope, which has been shown to be small (Vengayil 
and Kirby, 1986). The incident wave n+ is represented by the Fourier 
series 

+/   •,   v  . / \ in(fkdx-cot) , 
n (x,t) = I    A (x)e VJ       + a> = ck (6) 

n-1 

The series is substituted in equation (la) (neglecting n ) to give 

A  +^A - iA(M02 A + 
n   4h n     12     n 

,. .  n-1 N-n 
+ 2iE£ { Y A„A  , + 2  T A*A  \ 

8h = 0 

n=l,.. • ,N (7) 

The model equation may be extended to include laminar frictional 
damping due to bottom and sidewalls by the addition of the term 

Xl+il A2 (2v} V2 {1 + 2h} A 
2h (8) 

to equation (7).  Here, v is the kinematic viscosity and b is the 
channel width. 

^.00 H.00 20.00 00     12.00    16.00 

a DISTANCE (m) 
Figure 2.     a)  TEST 041071,   T = 2.5  sec,   H = 0.07 m. 

24.00 
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b)  TEST 041041, T = 2.5 sec, H = 0.04 m. 
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Figure 2.  Numerical results of  shoaled wave height, ( , inviscid 
theory; —•—•—, bottom friction included  , bottom and 
side wall friction included) compared to experimental 
results of Buhr Hansen and Svendsen (1979). Also shown are 
the component amplitudes |A]J - |AJQ| for flow with bottom 
and side wall friction. 
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Results for shoaled wave heights are shown in Figure 2a-c for the 
three longest waves studied. Results are shown for undamped waves, 
damping due to bottom friction alone, and damping due to bottom and 
sidewalls. Also included are plots of component amplitudes 
|AI|-|AJQ| for the case with sidewall damping. The reproduction of 
shoaling wave height is good for the damped cases. 

Figure 3 shows computed wave forms in comparison to experimen- 
tally measured waves for the cases with bottom and sidewall damping. 
Reproduction of measured wave form is quite good except in regions 
close to wave breaking. In these regions the forward face of the wave 
tilts towards a vertical position and vertical accelerations become 
quite large, thus invalidating the Boussinesq approximation locally. 
However, the model has no apparent difficulty in predicting shoaled 
wave height up to the breaking limit. An investigation of the higher 
order skewness and asymmetry properties of the shoaled waves is 
presently underway and will be reported subsequently. 

Gradual Reflection of Solitary Waves 

A test of the coupled equations was performed by comparing 
results for reflection of a solitary wave by an underwater slope with 
experimental data obtained by Goring (1978). Goring also computed 
theoretical results for reflection coefficients based on numerical 
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Figure 4.  Reflection coefficients for solitary waves propagating over 
a submerged slope. Data from Goring (1978). 
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solution of the Boussinesq equations (weakly nonlinear-weakly 
dispersive case) and on the Bessel function solution of the linear- 
nondispersive shallow water equation. Figure 4 gives results of 
reflection coefficient based on the ratio of height of reflected wave 
to height of incident wave for varying values of slope length L to 
incident wavelength I, for a particular case of a depth reduction 
nl/n2 = l*'     Tne incident wave length is estimated here according to 

I  = 1.5 (Hj/h^-^h,^ (9) 

Results of the present study agree most closely with the linear 
nondispersive theory, indicating the overall dominance of the slope 
effect in the scattering process. The present theory and Goring's 
linear theory each deviate slightly from Goring's nonlinear theory, 
indicating that there is some effect due to nonlinear coupling between 
the incident and reflected wave. This discrepancy is presently being 
investigated using a version of the present theory which retains 
nonlinear coupling between the opposite-going waves. 

An example of the time history of a solitary wave reflection for 
a particular case of a fairly abrupt slope is given in Figure 5. The 
development of the reflected wave, moving to the left with increasing 
time, is apparent, as is the nonlinear evolution of the incident wave 
after it moves onto the shelf. This evolution involves the generation 
of three soliton modes which are rank-ordered in height and subse- 
quently disperse due to the nonlinear evolution. The reflected wave 
is seen to have about the same width as the incident wave (as would be 
expected for a short slope) and evolves only slowly due to its low 
initial amplitude (scale on right). The presence of a high frequency 
tail following each wave train is just becoming apparent on the top 
trace of the picture. 

Resonant Reflection by Sand Bars 

Recently, Mei (1985) has investigated the resonant interaction 
which occurs between an incident wave of wavenumber k, a synchronous 
reflected wave with wavenumber -k and a bar field with dominant wave- 
number X = 2k. Mei's investigation was for the case of linearized, 
intermediate depth theory. Here, we have extended the investigation 
to the case of nonlinear, weakly-dispersive waves. The topography 
studied had the form 

h(x) = • 

tiQ x<0 ; x>L 

hQ + Dsin Xx       0<x<L (10) 

where D is the bar amplitude and X = 2TT/£I3 is the bar wavenumber. 
Results are presented here for L = kl-^ (four bars in the patch). The 
relevant governing equations are developed by using equation (6) for 
the incident wave n+ and 
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Figure  5.     Evolution    of    a solitary wave.     Incident wave propagates  to 
the  right. 
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-,  .v   v T> / \ -in( fkdx-wt) , n (x,t) = I    B (x) e  VJ       + (11) 
n=l 

for the reflected wave.  Substitution of (6) and (11) in the governing 
model equation (1) leads to the coupled system of evolution equations 

and 

A  + -p-  f A - B e n   4h *• n   n 
-2in/kdx-, _ in k h 

> 12    n 

n-1 N-n 3ink 
8h  L ^ "l"n-H   '   ~    £ "{,"n+£J I A,An_, + 2 I    A*A  1 =0    (12) 

3, 3,2 
B  + * (B - A e2in/kdX)   in k h 
n   4h ^ n   n       > 12    n 

n-1 N-n 3ink 
8h     L  ^    "Jl"n-«,   "   ~    £    ~JTn+JlJ [   I    B.B     .  + 2     I    B*Bn+J   = 0 (13) 
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Figure  6.     a)   linear  theory 
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The incident wave Ajj(0) is specified according to a spectral solution 
for permanent waves in the RLW equation (Vengayil and Kirby, 1986). 
The Bn(L) are set equal to zero, representing the case of no waves 
arriving at the patch from large positive x. 

Figure 6 shows results for D/hg = 0.4 and n=4 for a range of bar 
lengths relative to a fixed wavelength. The plots give calculated 
reflection coefficient R^ = |B^CO)/A^(0)| and transmission coefficient 
Tl= IAi(L)/Aj(0)| as solid lines. This represents the complete 
solution for linear theory (Figure 6a). The presence of the resonant 
peak at 2k/A = 1 is apparent. In Figure 6b (nonlinear theory), the 
results for the reflection coefficient Rj, which now represents only 
one component of the wave field, does not differ greatly from the 
linear result. This result may be of some importance since it 
indicates that the linear scattering process dominates the nonlinear 
effects over the relatively short bar field, which would allow the 
application of the linear scattering theory in a nearshore, nonlinear 
wave field. 

1.00- 
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0.00- 

2k/X 

Figure 6.  Reflection and  transmission of waves by a sinusoidal bar 
patch.  n=4, D/h = 0.4. 
b) nonlinear theory. 
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Also shown in Figure 6b are traces of the total transmitted 
energy Ef and reflected energy ER normalized by the total incident 
energy.  The numerical scheme was found to satisfy the requirement 

1 (14) 

to several decimal places for suitably fine discretizations of the 
physical domain. The only effect due to nonlinearity which is readily 
apparent in the results in Figure 6b is the drop in Tj below one for 
2k/A>l. This effect represents a transfer of energy to higher har- 
monics following from destabilization of the incident wave during its 
shoaling over the bar crests. 

Finally, Figure 7 shows the evolution of the spectral amplitude 
components during nonlinear evolution at the resonant condition in 
Figure 6. Only the growth |Bj| is strongly forced by the reflection 
process; the growth of ] B2 j and | B3 j may be partially due to reflec- 
tion but also is influenced strongly by the nonlinear transfer of 
energy from |B]J as it grows. Likewise, |A]J may gain energy from its 
harmonics as the incident wave loses energy over the bar field, which 
would tend to increase the apparent reflection. These two nonlinear 
effects thus compete in the overall reflection process, and their 
possible near-cancellation may contribute to the relatively small 
change in reflection coefficients noted in shifting from linear to 
nonlinear theory. This effect is presently being investigated in the 
context of resonantly-reflected solitary waves. 

DISTANCE (m) 

Figure 7.  Evolution of component amplitudes ] Aj^ | — | A31 and | Bj_ | — | B3 J 
for the resonant peak of Figure 6.  Nonlinear theory. 
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