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Abstract. This paper describes a method for the estimation of a dy-
namic open contour by incorporating a modified particle swarm opti-
mization technique. This scheme has been applied to a “Particle Image
Velocimetry” experiment for the analysis of fluid turbulence during a hy-
draulic jump. Due to inter reflections within the medium and refractions
across different media interfaces, the imagery contains spurious regions,
which have to be eliminated prior to the estimation of turbulence sta-
tistics at the fluid surface. The PIV image sequences provide a strict
test bed for the performance analysis of this estimation mechanism due
to the occurrence of intense specularity and extreme non-rigid motion
dynamics.

1 Introduction

Edge detection and image segmentation is a crucial initial step in most computer
vision applications prior to performing high-level tasks such as object recogni-
tion and scene interpretation. The presence of noise and other non-linearities
imposes a strict restriction on this segmentation process. Since its formulation,
the active contour model [1] tries to combine low level image information with
high level structural information to provide a lucid description of the underly-
ing structure in the presence of non-linearities. Usually this balance is brought
about by two energy components, an internal energy component that charac-
terizes the contour smoothness making it possible to estimate contour elements
in places with incomplete image information and an external energy component
that incorporates the low level image characteristics.

Among the variants of the active contour, notable ones include the greedy
algorithm proposed by Williams and Shah [2], the balloon model by Cohen
[3], the region based model by Ronfard [4] and the gradient vector flow based
snake formulations by Xu and Prince [5]. Contour modeling via state space
estimation was performed by Isard et al. [6] where the contour was represented
as a state element and sequential importance sampling was used to track the
contour state over time. Pérez et al. [7] described a contour extraction procedure,
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called Jetstream, that was also based on importance sampling with each contour
location being used to compute the position of next contour location. Most
active contour formulations depend on the availability of high image gradient for
efficient processing. In image sequences with weak gradient information, these
methods have difficulty in estimating the contour accurately. Statistical snakes
as proposed by Ivins et al. [8] and the discriminant snakes proposed by Pardo et
al. [9] tackle contour formulation by incorporating statistical information from
the image and thus have been shown to be robust under noise and low gradient
imagery.

In this paper, we attempt to extract a dynamic open contour that is built
along the lines of the statistical snakes with multiple candidate hypotheses ex-
tracted from the image via a modified swarm optimization model. The swarm
optimization scheme, “consume and move” has been developed to obtain multi-
ple candidates, which could subsequently be used in computing the contour. The
paper begins by giving a brief description of the interface extraction problem.
This is followed by the description of the Particle Swarm Optimization model.
The processing methodology that was developed for the minimization framework
is described subsequently along with the results obtained from the algorithm.
Finally, we present our conclusions and possible future directions.

2 Problem Description

In analyzing the salient structures in the velocity fields of incompressible tur-
bulent fluid flows, such as water in confined channels [11], insertion of probes
and measuring gauges into the fluid flow could create artificial turbulent defor-
mations. In a regular Particle Image Velocimetry (PIV) experiment, the flow
is seeded with suitable tracer particles, illuminated by a planar laser sheet and
time-lapsed images are recorded. The displacement of the particles in the im-
ages is measured in the plane of the image, and is used to determine the flow
(see [12] and the references therein). PIV has thus become an established non-

(a) (b)

Fig. 1. (a) Example of the interface extraction problem (b) Geometry of the problem
- Image taken from [10], Figure 4, page 432
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intrusive measurement technique to measure the kinematics of turbulent fluid
flow in controlled laboratory experiments.

It is often imperative to obtain detailed instantaneous flow velocities near
the air-water (2-phase) interface, which necessitates an accurate estimation of
the interface. This is inherently a difficult problem since most intensity based
edge detection methods fail due to the presence of interface reflections in a PIV
image [13]. Typically, the interface is concurrently visualized by a technique
called Laser Induced Fluorescence (LIF) in which a fluorescent dye is added to
one phase and excited to a particular wavelength by the laser thereby obtaining
the interface as a sharp gradient at the specific wavelength[14]. A simultaneous
PIV and LIF experiment therefore requires two separate imaging systems which
add both complexity and cost to the entire estimation process.

Given the characteristics of fluid flow, the main problem that arises in esti-
mating the interface from cross sectional images are the presence of badly defined
boundaries that occurs due to the translucency of the fluid. The other problem
that is often encountered is the presence of false regions of reflection (Fig. 1(a)).
These regions occur due to the imaging device, which captures light undergo-
ing total internal reflections from various sections in the fluid flow (Fig. 1(b)).
Manual calculation of the interfaces remains a daunting task due to the large
volume of data that is typically obtained in a regular PIV experiment. A robust,
objective and automated method, which would be able to tackle these problems
and calculate the interface solely based on the available image information, is
thus very essential.

3 Processing Methodology

3.1 Particle Swarm Optimization

“Particle Swarm Optimization (PSO) is a population-based stochastic optimiza-
tion technique for optimizing complex functions through the interaction of in-
dividuals in a population of particles.” ([15], pp 2). The original formulation
was proposed by Kennedy and Eberhart [16] and was based on the simulation
of social behavior among flocks of birds. Each particle in the population (also
called the swarm) adjusts its trajectory towards its own best position and to-
wards the best position attained by the whole group [17]. The system dynamics
are governed by the following equations.

v(t)
i = ωv(t−1)

i + c1χ1(p
(t−1)
i − x(t−1)

i ) + c2χ2(g(t−1) − x(t−1)
i ) (1)

x(t)
i = x(t−1)

i + v(t)
i (2)

where χ1, χ2 ∼ U [0, 1] are two Ns × Ns diagonal matrices of uniform random
numbers with Ns being the total number of particles in the swarm. ω is the
“inertia weight” that regulates the trade-off between the global (wide-ranging)
and the local (nearby) exploratory capabilities of the swarm [17]. x(t−1)

i is the
ith particle in the swarm at the (t−1)th iteration and v(t−1)

i is its corresponding
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“velocity” component. p(t−1)
i corresponds to the position of the best fitness value

for the ith particle while g(t−1) corresponds to the best fitness value for the entire
swarm.

 

( )1−txi ( )1−tx j

( )1−tpi ( )1−tg ( )1−tp j

( )tvi

( )tv j

Fig. 2. Particle system in the Particle Swarm Optimization model for a two particle
(x(t−1)

i and x(t−1)
j ) system

Among the three components of this dynamical equation, ωv(t−1)
i is the “in-

ertial component”, which constrains the velocity state estimate along the di-
rection of v(t−1)

i . The second component, the “cognitive term” for each par-
ticle, c1χ1(p

(t−1)
i − x(t−1)

i ) constrains the particle motion in the direction of
its previous best value while the third component, the “social component”,
c2χ2(g(t−1) − x(t−1)

i ), directs the particles towards the best among all the el-
ements in the swarm. The random variables χ1 and χ2 provide for the stochastic
parameters for the search with c1 and c2 as two positive weights that control
each of the components (Figure 2). An important aspect of PSO systems, for
performing functional optimizations, is that the entire dynamical update is per-
formed using additions and multiplications alone and is thus computationally
very efficient.

“Explorers and Settlers” Paradigm. One of the variants to the particle
swarm model was the “Explorers and Settlers” model as proposed by Kennedy
and Eberhart [16]. In this paradigm, the swarm is composed of having two kinds
of agents, the “explorers” and the “settlers”. The “settlers” provided for micro-
level function optimization of “known” regions of the problem domain while
the “explorers” searched for regions outside for better “solutions”. But as dis-
cussed by Kennedy and Eberhart [16] this scheme did not provide a significant
improvement in the tests that they conducted.

In contrast, tackling the interface problem requires estimating multiple can-
didate hypothesis from a given search space so that the final open contour is
drawn across the best possible candidates. To tackle this requirement we modi-
fied the “explorers and settlers” scheme to provide a mechanism for the swarm
to continue in the exploratory phase after a goal is reached. This model, called
the “consume and move”, can be described in terms of migratory systems where
the swarms continue moving in search for new pastures after the consumption
of one specific region.
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The essential principle of this model is to decrease the fitness metric of the
search space after the swarm has converged at a specific goal g(t). Depending on
ω, c1 and c2, a subset of particles x

(t)
i , i = {1 . . .N1} (N1 ≤ Ns), would converge

to the best fitness value in the search space. For every particle xi in the swarm,
the fitness functional is cumulatively scaled down in proportion to the proximity
of the particle to the goal. This scaling could be accomplished using the affinity
function exp(−‖x(t)

i −g(t)‖2/2σ2) with the fitness at the position of the particles
that coincide with the goal node being scaled more than the others. This scaling
would thus “consume” the fitness functional to a greater extent at regions that
are at a closer proximity to point of convergence of the swarm particles. Thus,
iterating the search mechanism with this modified fitness space would constrain
the swarm to “move” out and look for other possible candidate positions.

3.2 Contour Estimation

Kass [1] defined an active contour as a parametric contour v(s) = (x(s), y(s)), s ∈
[0, 1] that balances the internal energies Eint and the external energies Eext

(Eq. 3)

E∗ =
∫ 1

0
[w1Eint(v(s)) + w2Eext(v(s))]ds (3)

where w1 and w2 are the weights that control the importance of one energy term
over the other. Assuming a discrete approximation of Eq. 3, we have

E =
N∑

i=1

[αEdist(vi) + βEsmo(vi) + γEext(vi)] (4)

where α, β, γ are the weighting parameters, N is the number of discrete contour
samples and

Edist(vi) = | (‖vi − vi−1‖ + ‖vi+1 − vi‖)
2

N−1ΣN
j=2‖vj − vj−1‖

− 1|

Esmo(vi) = 1 − cos(θi) = 1 − (vi+1 − vi) · (vi − vi−1)
‖vi+1 − vi‖‖vi − vi−1‖

with θi being the smoothness term as defined in [18]. The external energy Eext

is derived from the image information and is usually the magnitude of the image
gradient information.

Pixel Likelihood Estimation. The external energy term (Eext) in a dynamic
contour transfers the low level image information to the high level structural
information. Most active contour methods are derived using the image gradient
as the external energy constraint, but in images where the gradient is hard to
estimate or the estimated gradient is inaccurate, the external energy functional
has to be modeled using other image characteristics.

In a PIV image, the tracer particles have a distinct signature [19] which
would enable a high-pass filter to approximately intensify the particle zones and
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(a) (b)

Fig. 3. (a) Input PIV image (b) PIV image after PCA over the feature space

suppress the other regions. Local image statistics such as entropy, mean and
standard deviation are extracted from the high-pass filtered image IH. Each of
these features would provide information regarding the local data variation in IH.
Principal Component Analysis (PCA) of this feature space is subsequently used
to transform this space so as to maximize the data variation along individual
eigen-directions. As shown in the figure 3(b), this PCA based transformation of
the local image statistics provide a more succinct description of the underlying
particle distribution.

In the PIV data, the likelihood that a pixel belongs to the surface was com-
puted as the difference between the average intensity on the top and bottom
of the pixel spatial position. Pixels very close to the actual surface, described
a higher value of the likelihood as against the pixels elsewhere. This likelihood
formed the fitness metric that was used in the “consume and move” swarm
optimization strategy (section 3.1) to obtain multiple snaxel candidates.

Contour Optimization. Given the candidate hypotheses, finding the contour
that minimizes the internal and external energy functional is performed using
the dynamic programming (DP) approach as described by Amini et al. [20]. De-
pending on the pixel likelihood, different snaxels would have different hypotheses
and thus energy minimization using DP is well-suited in tackling this contour
optimization problem. The overall energy minimization would be achieved by
minimizing the intermediate variables ξk such that

vk = min ξk, k = 1 . . .N (5)

under the constraint that

ξk = ξk−1 + min
zk∈Ck

{Eint(zk−1, zk, zk+1) + Eext(zk)} (6)

where zk are the candidate snaxels positions and Eint and Eext are the internal
and external energies computed at each of the candidate positions ∈ Ck. ξ1 is
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initialized as the minz1∈C1 Eext(z1). The completion of the entire forward and
reverse iterations of the DP presents the best possible positional estimates, vk.

4 Experimental Setup

The experiments were performed in a recirculating water tank that is sixteen feet
long and one foot wide, with glass side walls and a solid bottom. The water was
seeded with 14 µm silver coated hollow glass spheres and was pumped into the
upstream end of the channel. A 120 mJ/pulse Nd-Yag New Wave solo laser source
was mounted onto a custom-built submersible periscope which was lowered into
the water so that the laser beam emerged as a planar light sheet parallel to the
water tank wall. The flow was captured by a Kodak Megaplus 1.0 camera with
a 1016 × 1008 pixel resolution (see [19] for details).

5 Results and Analysis

The algorithm that has been developed in the previous section has been tested
on 1020 Particle Image Velocimetry image pairs. As can be easily seen these
images are subject to extreme non rigid motion due to the fluid motion being
captured and would thus be ideal in testing out the efficiency of the algorithm.
The current implementation of the interface calculation is embedded in a hier-
archical framework with coarse initial contours being used to guide subsequent
finer contours. The entire process is iterated until the cumulative temporal vari-
ation of the contour elements, ‖v1:N(t − 1) − v1:N (t)‖ is ≤ 0.1N , which is used
as a metric to indicate the stabilization of the contour.

5.1 Quantitative Comparison

Due to the unavailability of ground truth, the result from the algorithm was
assessed with respect to human perception. 10 randomly sampled PIV images
were distributed among 4 participants with expertise in fluid dynamics. A short
problem description was provided and the subjects were asked to find out the
contour as they best perceived it. Since the inputs obtained from the subjects
were sparse, a least square B-spline was used to compute the contour for the
entire width of the image. In comparing the results of the algorithm with the
output from the human participants, it is essential that the contours computed
by the participants be considered as NOT significantly different from one an-
other. It is also necessary to statistically show that the estimated contour does
not significantly differ from those obtained from the participants. This analysis
was accomplished using an independent sample one-way ANOVA. Figure 4(a)
shows the box plots for the average contour variation across the 10 images for
each of the participants (S1, S2, S3, S4). Figure 4(b) shows the average contour
variation of the estimated contour in tandem with the output from the four
participants. Also indicated are the corresponding p-values to provide a quan-
titative metric of similarity between the contours across the image pairs. The
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Fig. 4. Results using the One-way ANOVA (a) Testing for inter subjects variability
(p-value = 0.5581) (b) Testing if the estimated contour differed significantly from the
“ground truth” contours (p-value = 0.5055)
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Fig. 5. (a) Estimated contour points plotted in comparison with the mean variation
of the “ground truth” contours (b) Mean and Median error deviation of the estimated
contour

large p-values indicate that the individual sample means are not significantly
different from one another or from the contour estimated by our algorithm.

Figure 5 is one of the test images (Contour 68) shown in conjunction with
the error between the estimated contour and the mean of the contours from
the 4 participants. The error bars show the maximum deviation from the mean
and it is evident that the estimated contour falls within the upper and lower
bounds of the contours obtained from the experts to a large extent. This method,
thus provides a good initial estimate so as to apply free-surface kinematics to
determine the exact position of the interface.

The algorithm was developed using MATLAB and has been tested with 1020
PIV images. Repeated trials indicate that the algorithm is stable and computa-
tionally efficient (The algorithm required ∼ 20 seconds to process a 128 × 960
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Table 1. Error Analysis for 10 images, where the ground truth was extracted by
the 4 subjects with expertise in fluid dynamics. The plot indicates the error variation
( 1

N
N
i ‖ xi − µi ‖) between the contour estimated by the algorithm and the ground

truth.

Contour Subject1 Subject2 Subject3 Subject4

4 0.6527 0.6245 0.7504 0.7682
8 0.2791 0.2389 0.3310 0.3008
14 0.3493 0.3343 0.6700 0.6099
29 0.3550 0.5628 0.5312 0.5964
33 0.3687 0.2692 0.3573 0.4072
68 0.3998 0.2193 0.2364 0.2398
269 0.3503 0.4056 0.3093 0.3663
217 0.6549 0.3696 0.3262 0.3151
301 0.6733 0.2508 0.3732 0.4026
362 0.3813 0.3540 0.3454 0.3488

image, using ∼ 100 particles at each contour location). The average MSE, across
the 10 images, are shown in Table 1 to further clarify the accuracy of the algo-
rithm.

6 Conclusions

This paper describes a method to extract dynamic contours using particle swarm
optimization and dynamic programming. The algorithm is robust and compu-
tationally efficient. The algorithm developed was applied to the free surface
estimation in a 2-phase fluid flow using a PIV setup. Due to the lack of ground
truth, the estimated contours have been compared with the results obtained from
experts in the field of fluid dynamics. It has been observed that the estimated
contour is not statistically different from the expert estimation. The method
has now been tested over a sequence of 1020 PIV image pairs that have been
further processed to compute instantaneous and ensemble average velocities at
the interface.
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